Efficient approximate sampling of projection determinantal point processes

Guillaume Gautier^{1,2}, Rémi Bardenet¹, and Michal Valko²

¹CNRS & CRIStAL, Univ. Lille ²Inria Lille

Motivation

Image search/recommendation systems

'bolt' query

Motivation

Extractive text summarization (Kulesza & Taskar, 2012)

Definition

- $\{1, \ldots, N\}$ indices/labels of items
 - images
 - sentences
 - edges of a graph
- DPP(**K**) a measure on subsets of $\{1, \ldots, N\}$
- ► K a PSD similarity kernel
- $\mathcal{X} \sim \mathsf{DPP}(\mathbf{K})$ if $\forall S \subseteq \{1, \dots, N\}$,

 $\mathbb{P}\left[S\subseteq\mathcal{X}\right]=\det \mathbf{K}_{S}$

 \blacktriangleright Existence is guaranteed when $\mathbf{0}_{\textit{N}} \preceq \textbf{K} \preceq \textbf{I}_{\textit{N}}$

- ▶ K is an orthogonal projection matrix
 - Spec $\mathbf{K} \in \{0,1\}^N$

- ▶ K is an orthogonal projection matrix
 - Spec $\mathbf{K} \in \{0,1\}^N$
- $\blacktriangleright |\mathcal{X}| \stackrel{a.s.}{=} \operatorname{Tr} \mathbf{K} = \operatorname{rank} \mathbf{K} = r$
 - Summaries made of r sentences
 - Bags of r images

- ▶ K is an orthogonal projection matrix
 - Spec $\mathbf{K} \in \{0,1\}^N$
- $\blacktriangleright |\mathcal{X}| \stackrel{a.s.}{=} \operatorname{Tr} \mathbf{K} = \operatorname{rank} \mathbf{K} = r$
 - Summaries made of r sentences
 - Bags of r images

• Gram matrix

$$\mathbf{K} = \sum_{i=1}^{r} u^{(i)} u^{(i)^{\mathsf{T}}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}$$
with $\varphi_n = (u_n^{(1)}, \dots, u_n^{(r)})^{\mathsf{T}}$

- ▶ K is an orthogonal projection matrix
 - Spec $\mathbf{K} \in \{0,1\}^N$
- $\blacktriangleright |\mathcal{X}| \stackrel{a.s.}{=} \operatorname{Tr} \mathbf{K} = \operatorname{rank} \mathbf{K} = r$
 - Summaries made of r sentences
 - Bags of r images
- Gram matrix

$$\mathbf{K} = \sum_{i=1}^{r} u^{(i)} u^{(i)^{\mathsf{T}}} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}$$

with $\varphi_n = (u_n^{(1)}, \dots, u_n^{(r)})^{\mathsf{T}}$

• Geometrical interpretation $\mathbb{P}[S \subseteq \mathcal{X}] = \det \mathbf{K}_S$ $= \operatorname{Vol}^2 \{\varphi_i; i \in S\}$

Diversity

Negative association

$$\mathbb{P}\left[\{i,j\} \subseteq \mathcal{X}\right] = \begin{vmatrix} \mathbb{P}\left[i \in \mathcal{X}\right] & \mathbf{K}_{ij} \\ \mathbf{K}_{ij} & \mathbb{P}\left[j \in \mathcal{X}\right] \end{vmatrix}$$
$$= \mathbb{P}\left[i \in \mathcal{X}\right] \mathbb{P}\left[j \in \mathcal{X}\right] - \mathbf{K}_{ij}^{2}$$
$$\leq \mathbb{P}\left[i \in \mathcal{X}\right] \mathbb{P}\left[j \in \mathcal{X}\right]$$

Diversity

Negative association

$$\mathbb{P}[\{i,j\} \subseteq \mathcal{X}] = \begin{vmatrix} \mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{ij} \\ \mathbf{K}_{ij} & \mathbb{P}[j \in \mathcal{X}] \end{vmatrix} \\ = \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}] - \mathbf{K}_{ij}^2 \\ \leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]$$

- The larger $|\mathbf{K}_{ij}|$ the smaller $\mathbb{P}\left[\{i, j\} \subseteq \mathcal{X}\right]$
 - Diversity/repulsion
 - $|\mathbf{K}_{ij}|$ yields departure from independence

Diversity

Negative association

$$\mathbb{P}[\{i,j\} \subseteq \mathcal{X}] = \begin{vmatrix} \mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{ij} \\ \mathbf{K}_{ij} & \mathbb{P}[j \in \mathcal{X}] \end{vmatrix}$$
$$= \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}] - \mathbf{K}_{ij}^{2}$$
$$\leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]$$

- The larger $|\mathbf{K}_{ij}|$ the smaller $\mathbb{P}\left[\{i, j\} \subseteq \mathcal{X}\right]$
 - Diversity/repulsion
 - ► |**K**_{ij}| yields departure from independence

• Build the $r \times N$ feature matrix

$$\mathbf{A} = \left(\sqrt{q_1}\phi_1|\ldots|\sqrt{q_N}\phi_N\right)$$

- If $\|\phi_i\|^2 = 1$, 'angles' encode diversity
- ► q_i measures relevance of item i

• Build the $r \times N$ feature matrix

$$\mathbf{A} = \left(\sqrt{q_1}\phi_1|\ldots|\sqrt{q_N}\phi_N\right)$$

- If $\|\phi_i\|^2 = 1$, 'angles' encode diversity
- q_i measures relevance of item i

Assumption

• Build the $r \times N$ feature matrix

$$\mathbf{A} = \left(\sqrt{q_1}\phi_1|\dots|\sqrt{q_N}\phi_N\right)$$

- If $\|\phi_i\|^2 = 1$, 'angles' encode diversity
- q_i measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K} = \mathbf{A}^{\mathsf{T}} [\mathbf{A} \mathbf{A}^{\mathsf{T}}]^{-1} \mathbf{A}$

Assumption

• Build the $r \times N$ feature matrix

$$\mathbf{A} = \left(\sqrt{q_1}\phi_1|\dots|\sqrt{q_N}\phi_N\right)$$

- If $\|\phi_i\|^2 = 1$, 'angles' encode diversity
- q_i measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K} = \mathbf{A}^{\mathsf{T}} [\mathbf{A} \mathbf{A}^{\mathsf{T}}]^{-1} \mathbf{A}$
- ► If X ~ DPP(K),

•
$$|\mathcal{X}| \stackrel{a.s.}{=} r$$

• For $B = \{i_1, \dots, i_r\}$,

 $\mathbb{P}\left[\mathcal{X}=B
ight]\propto |\mathsf{det}\,\mathbf{A}_{:B}|^2=\mathsf{Vol}^2\left\{\sqrt{q_i}\phi_i\,;\,i\in B
ight\}$

Assumption

• Build the $r \times N$ feature matrix

$$\mathbf{A} = \left(\sqrt{q_1}\phi_1|\dots|\sqrt{q_N}\phi_N\right)$$

- If $\|\phi_i\|^2 = 1$, 'angles' encode diversity
- q_i measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K} = \mathbf{A}^{\mathsf{T}} [\mathbf{A} \mathbf{A}^{\mathsf{T}}]^{-1} \mathbf{A}$
- If $\mathcal{X} \sim \mathsf{DPP}(\mathbf{K})$,

•
$$|\mathcal{X}| \stackrel{\text{a.s.}}{=} r$$

• For $B = \{i_1, \dots, i_r\}$,
 $\mathbb{P}[\mathcal{X} = B] \propto |\det \mathbf{A}_{:B}|^2 = \operatorname{Vol}^2 \{\sqrt{q_i}\phi_i ; i \in B\}$

► DPP(K) has support

$$\mathcal{B} \triangleq \{B; |B| = r, \det \mathbf{A}_{:B} \neq 0\}$$

i.e. collection of columns of $\boldsymbol{\mathsf{A}}$ forming a basis

Assumption

Uniform spanning trees (Lyons, 2003)

Vertex-edge incidence matrix

Uniform spanning trees (Lyons, 2003)

e₄

1

 e_5

Uniform spanning trees (Lyons, 2003)

Uniform spanning trees (Lyons, 2003)

DPP(K) is a measure on the edge set of G
 B = collection of spanning trees of G

$$\blacktriangleright \mathbb{P}[\mathcal{X} = B] = \frac{\left|\det \mathbf{A}_{:B}\right|^{2}}{\det \mathbf{A}\mathbf{A}^{\mathsf{T}}} = \frac{1}{|\mathcal{B}|}\mathbb{1}_{B \in \mathcal{B}}$$

Rk: Unimodularity, transfer current matrix, matrix tree theorem, Laplacian solvers

Exact sampling

- From $r \times N$ feature matrix $\mathbf{A} = (\phi_1 | \dots | \phi_N)$
- To $N \times N$ projection kernel $\mathbf{K} = \mathbf{A}^{\mathsf{T}} [\mathbf{A}\mathbf{A}^{\mathsf{T}}]^{-1} \mathbf{A}$

Exact sampling (Hough et al., 2006; Kulesza & Taskar, 2012) Sample $\mathcal{X} \sim \mathsf{DPP}(\mathbf{K})$

Marginals

$$\mathbb{P}\left[\mathcal{X}=B
ight]=\mathsf{det}\,\mathbf{K}_B$$

• Chain rule,
$$J = \{i_1, \ldots, i_k\}$$

$$\mathbb{P}\left[i_{k+1}=i|J\right]\propto \mathbf{K}_{ii}-\mathbf{K}_{i,J}\mathbf{K}_{J}^{-1}\mathbf{K}_{J,i}$$

• Costly: eigen-decomposition + Gram-Schmidt = $O(N^3 + Nr^2)$

Rk: Uniform spanning trees (Aldous, 1990; Propp & Wilson, 1998), generation of mazes

Approximate sampling - 1

From $r \times N$ feature matrix $\mathbf{A} = (\phi_1 | \dots | \phi_N)$

Approximate sampling (Anari et al., 2016; Li et al., 2016)

Build a Markov chain, $\mathbf{B} \triangleq \mathbf{A}_{:B}$

- State space $\mathcal{B} \triangleq \{B; \det \mathbf{B} \neq 0\}$
- Stationary distribution

$$\propto \left|\det \mathbf{B}
ight|^2 = \operatorname{Vol}^2\left\{\phi_i \text{ ; } i \in B
ight\} \cdot \mathbb{1}_{B \in \mathcal{B}}$$

- Basis-exchange graph
 - $B \leftrightarrow B' = (B \setminus \{i\}) \cup \{j\}$
 - Full analysis: polynomial mixing time
 - \blacktriangleright Local and correlated moves on ${\cal B}$

Approximate sampling - 1

Approximate sampling - 2

From $r \times N$ feature matrix $\mathbf{A} = (\phi_1 | \dots | \phi_N)$

Approximate sampling (G., Bardenet & Valko, 2017)

Build a Markov chain, $\mathbf{B} \triangleq \mathbf{A}_{:B}$

- State space $\mathcal{B} \triangleq \{B \text{ ; det } \mathbf{B} \neq 0\}$
- Stationary distribution

$$\propto \left|\det \mathbf{B}\right|^2 = \operatorname{Vol}^2\left\{\phi_i \ ; \ i \in B
ight\} \cdot \mathbb{1}_{B \in \mathcal{B}}$$

- Wander in a continuous embedding of B
 - Geometrical representation of B
 - More decorelated moves, empirically faster mixing

Approximate sampling - 2

Approximate sampling - 2

Approximate sampling - 2

Continuous embedding of the state space $\ensuremath{\mathcal{B}}$

Volume spanned by feature vectors

 $\mathcal{Z}(\mathbf{A}) \triangleq \mathbf{A}[0,1]^N$

Continuous embedding of the state space $\ensuremath{\mathcal{B}}$

Volume spanned by feature vectors

admits a natural tiling (Dyer & Frieze, 1994), $\mathbf{B} \triangleq \mathbf{A}_{:B}$

$$\mathsf{Vol}\,\mathcal{Z}(\mathsf{A}) = \sum_{B\in\mathcal{B}}\mathsf{Vol}\,\mathsf{B} = \sum_{B\in\mathcal{B}}|\mathsf{det}\,\mathsf{B}|$$

Random walk on \mathcal{B} i.e. on tiles

- From $r \times N$ feature matrix $\mathbf{A} = (\phi_1 | \dots | \phi_N)$
- Limiting distribution, $\mathbf{B} \triangleq \mathbf{A}_{:B}$

$$\mathbb{P}\left[\mathcal{X}=B\right] \propto \operatorname{Vol}^{2} \mathbf{B} \cdot \mathbb{1}_{B \in \mathcal{B}}$$

• State space
$$\mathcal{B} \triangleq \{B; \det \mathbf{B} \neq 0\}$$

• Continuous embedding of \mathcal{B} via tiling of $\mathcal{Z}(\mathbf{A}) = \mathbf{A}[0,1]^N$

Random walk on $\ensuremath{\mathcal{B}}$ i.e. on tiles

Underlying continuous walk

- $\mathcal{Z}(\mathbf{A})$ is a polytope (convex)
- ▶ Hit-and-run is efficient for convex bodies (Lovász & Vempala, 2003)

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(A)$

Random walk on $\ensuremath{\mathcal{B}}$ i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$

Discrete random walk on $\ensuremath{\mathcal{B}}$

Identify the tile in which x lies

►
$$B_x = \{i; y_i^* \in]0, 1[\}$$

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(A)$ $x + \alpha_m^+ d$ $x + \alpha_M d$

Continuous target distribution

$$\pi(x)\,\mathrm{d} x = \sum_{B\in\mathcal{B}} C_B \times \mathbb{1}_{\mathbf{B}}(x)\,\mathrm{d} x$$

Discrete random walk on \mathcal{B}

Identify the tile in which x lies

$$\begin{array}{ll} \min_{y \in \mathbb{R}^N} & c^{\mathsf{T}}y \\ \text{s.t.} & \mathbf{A}y = x \\ & 0 \leq y \leq 1 \end{array}$$

►
$$B_x = \{i; y_i^* \in]0, 1[\}$$

Random walk on $\ensuremath{\mathcal{B}}$ i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$

Discrete random walk on $\ensuremath{\mathcal{B}}$

Identify the tile in which x lies

•
$$B_x = \{i ; y_i^* \in]0, 1[\}$$

Continuous target distribution

$$\pi(x)\,\mathrm{d} x = \sum_{B\in\mathcal{B}} C_B \times \mathbb{1}_{\mathbf{B}}(x)\,\mathrm{d} x$$

Discrete target distribution

$$\mathbb{P}\left[B_x=B
ight]\propto\int_{\mathbf{B}}\pi(x)\,\mathrm{d}x=\mathit{C}_B imes\mathsf{Vol}\,\mathbf{B}$$

Acceptance = 1

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Acceptance = 1

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Discrete target distribution

$$\mathbb{P}\left[B_{x}=B
ight]\propto1 imes$$
Vol $\mathbf{B}=$ Vol $^{1}\mathbf{B}$

Acceptance = 1

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Discrete target distribution

$$\mathbb{P}\left[B_{x}=B
ight] \propto 1 imes ext{Vol} \ \mathbf{B}= ext{Vol}^{1} \ \mathbf{B}$$

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} \mathsf{Vol} \, \mathbf{B} imes \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Acceptance =
$$\frac{\operatorname{Vol} B(\tilde{x})}{\operatorname{Vol} B(x)}$$

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} \mathsf{Vol} \, \mathbf{B} imes \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Discrete target distribution

$$\mathbb{P}\left[B_x = B
ight] \propto \operatorname{Vol} \mathbf{B} imes \operatorname{Vol} \mathbf{B} = \operatorname{Vol}^2 \mathbf{B}$$

Acceptance =
$$\frac{\operatorname{Vol} B(\tilde{x})}{\operatorname{Vol} B(x)}$$

Continuous target distribution

$$\pi(x) \, \mathrm{d}x = \sum_{B \in \mathcal{B}} \mathsf{Vol} \, \mathbf{B} imes \mathbb{1}_{\mathbf{B}}(x) \, \mathrm{d}x$$

Discrete target distribution

$$\mathbb{P}\left[B_{\mathsf{x}}=B
ight]\propto \mathsf{Vol}\,\mathbf{B} imes \mathsf{Vol}\,\mathbf{B}=\mathsf{Vol}^2\,\mathbf{B}$$

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}[\{i_1, i_2, i_3\} \subseteq \mathcal{X}] = \det \mathbf{K}_{\{i_1, i_2, i_3\}}$

- Better mixing
- More decorelated

Fast sampling of projection DPPs?

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}[\{i_1, i_2, i_3\} \subseteq \mathcal{X}] = \det \mathbf{K}_{\{i_1, i_2, i_3\}}$

More decorelated

Sovle LPs

Fast sampling of projection DPPs?

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}[\{i_1, i_2, i_3\} \subseteq \mathcal{X}] = \det \mathbf{K}_{\{i_1, i_2, i_3\}}$

More decorelated

Sovle LPs

Efficient sampling of projection DPPs!

Some experiments

Summarizing a news article from Slate

Find Y to maximize (Kulesza & Taskar, 2012)

$$\int \text{Rouge-1F}(Y, Z) \text{DPP}(Z) dZ \approx \frac{1}{N} \sum_{i=1}^{N} \text{Rouge-1F}(Y, Y_i)$$

where Y_i are samples from our Markov chain

Figure 1: Estimation of the integrated cost

- Provide feature matrix A (full row rank)
 - Build DPP(A^T(AA^T)⁻¹A)
 - Continuous embedding of the state space
 - New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling

- Provide feature matrix A (full row rank)
 - Build DPP($\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}\mathbf{A}$)
 - Continuous embedding of the state space
 - New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling
- Applications:
 - ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)
 - Graph sampling (Tremblay et al., 2017)
 - Monte Carlo with DPPs (Bardenet & Hardy, 2016)

- Provide feature matrix A (full row rank)
 - Build DPP($\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}\mathbf{A}$)
 - Continuous embedding of the state space
 - New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling
- Applications:
 - ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)
 - Graph sampling (Tremblay et al., 2017)
 - Monte Carlo with DPPs (Bardenet & Hardy, 2016)
- Potential speed-up?
 - Starting points
 - Specific implementation of the simplex method

- Provide feature matrix A (full row rank)
 - Build DPP($\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}\mathbf{A}$)
 - Continuous embedding of the state space
 - New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling
- Applications:
 - ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)
 - Graph sampling (Tremblay et al., 2017)
 - Monte Carlo with DPPs (Bardenet & Hardy, 2016)
- Potential speed-up?
 - Starting points
 - Specific implementation of the simplex method
- Mixing time?
 - Difficult because of LPs
 - Choice of linear objective c in LP (identification of the tile)

- Provide feature matrix A (full row rank)
 - Build DPP(A^T(AA^T)⁻¹A)
 - Continuous embedding of the state space
 - New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling
- Applications:
 - ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)
 - Graph sampling (Tremblay et al., 2017)
 - Monte Carlo with DPPs (Bardenet & Hardy, 2016)
- Potential speed-up?
 - Starting points
 - Specific implementation of the simplex method
- Mixing time?
 - Difficult because of LPs
 - Choice of linear objective c in LP (identification of the tile)
- Generalization
 - ▶ *k*-DPPs (Kulesza & Taskar, 2011)
 - Generic and continuous DPPs (Hough et al., 2006)

Conclusion

- Provide feature matrix A (full row rank)
 - Build DPP($\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}\mathbf{A}$)
 - Continuous embedding of the state space
 - ▶ New bridge New bridge MCMC \cap Optimization = hit-and-run + LPs
 - Efficient sampling
- Applications:
 - ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)
 - Graph sampling (Tremblay et al., 2017)
 - Monte Carlo with DPPs (Bardenet & Hardy, 2016)
- Potential speed-up?
 - Starting points
 - Specific implementation of the simplex method
- Mixing time?
 - Difficult because of LPs
 - Choice of linear objective c in LP (identification of the tile)
- Generalization
 - k-DPPs (Kulesza & Taskar, 2011)
 - Continuous DPPs (Hough et al., 2006)

POSTER #80

References [1]

- Aldous, D. J. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.
- Anari, N., Gharan, S. O., and Rezaei, A. Monte-Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes. In *Conference on Learning Theory*, pp. 23–26, 2016.
- Bardenet, R. and Hardy, A. Monte-Carlo with determinantal point processes. *arXiv preprint arXiv:1605.00361*, 2016.
- Dyer, M. and Frieze, A. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. *Mathematical Programming*, 64(1-3):1–16, 1994.
- Feder, T. and Mihail, M. Balanced matroids. *Proceedings of the twenty-fourth annual ACM*, pp. 26–38, 1992.
- Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B. Determinantal processes and independence. *Probability surveys*, 2006.
- Kathuria, T., Deshpande, A., and Kohli, P. Batched gaussian process bandit optimization via determinantal point processes. *Neural Information Processing Systems*, pp. pp. 4206–4214, 2016.
- Kulesza, A. and Taskar, B. Determinantal point processes for machine learning. Foundations and Trends in Machine Learning, 5(2-3):123–286, 2012.
- Kulesza, A. and Taskar, B. k-dpps: Fixed-size determinantal point processes. International Conference on Machine Learning, pp. 1193–1200, 2011.

References [2]

- Li, C., Jegelka, S., and Sra, S. Fast mixing markov chains for strongly rayleigh measures, dpps, and constrained sampling. In *Neural Information Processing Systems*, pp. 4188–4196, 2016.
- Lovász, L. and Vempala, S. Hit and run is fast and fun. Technical Report MSR-TR-2003-05, 2003.
- Lyons, R. Determinantal probability measures. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2003.
- Oxley, J. What is a matroid? Cubo Matemática Educacional, 5.3:179-218, 2003.
- Propp, J. G. and Wilson, D. B. How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. *Journal of Algorithms*, 27(2): 170–217, 1998.
- Tremblay, N., Amblard, P.-O., and Barthelme, S. Graph sampling with determinantal processes. working paper or preprint, March 2017.