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Motivation

Motivation

Extractive text summarization (Kulesza & Taskar, 2012)
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Definitions - Properties
Definition

» {1,..., N} indices/labels of items
> images
> sentences
> edges of a graph

v

DPP(K) a measure on subsets of {1,..., N}

v

K a PSD similarity kernel

v

X ~DPP(K) if ¥S C {1,...,N},
P[S C A] = detKs

» Existence is guaranteed when Oy < K < Iy
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Definitions - Properties

Projection DPPs

» K is an orthogonal projection matrix
» SpecK € {0,1}"
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» Gram matrix
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i=1
. , T
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Definitions - Properties

Diversity

> Negative association
P[i € X] Kj

Ki P[jeX]
=P[ic X]P[j € X] - K
<P[ie X]P[j € X]

PH{ij}y < Xl =
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Definitions - Properties

Setup

» Build the r x N feature matrix

A= (Vasl...|\/auon)

2 , ) . .
> If ||#i]|” =1, 'angles’ encode diversity
> g; measures relevance of item i
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Definitions - Properties

Setup

» Build the r x N feature matrix Assumption
A= (y/qol...[vVanon) A is full row rank i.e. rank A = r

2 ) ) . .
> If ||#i]|” =1, 'angles’ encode diversity
> g; measures relevance of item i

» Build the N x N projection kernel K = AT[AAT] ' A

> If X ~ DPP(K),
- X%
» For B={i,...,i},

P[X = B]  |det A.g|> = Vo> {\/qi¢; ; i € B}

» DPP(K) has support
B2 {B; |B| =r,detAp # 0}

i.e. collection of columns of A forming a basis
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Definitions - Properties
One example
Uniform spanning trees (Lyons, 2003)

Vertex-edge incidence matrix

€1 €2 €3 €4 €5
a |l -1 -1 0 0 0
b 1 0 -1 -1 O
c 0 0 1 0 -1
d 0 1 0 1 1
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Definitions - Properties

One example

Uniform spanning trees (Lyons, 2003)

€ € €3 €y =

a -1 -1 0 0 0

b 1 0 -1 -1 0
A= c 0 0 1 0 -1

d 0 1 0 1 1

K=A"[AAT] 'A

€1 €y €3 €4 €5

» DPP(K) is a measure on the edge set of G e Z:
» B = collection of spanning trees of G € 030

|d A ‘2 1 e 0.15

et ‘B 0.00
» PIX=B]=—-—"=—1 €4 -0.15
[ 1= detaar = [g)lees .

Rk: Unimodularity, transfer current matrix, matrix tree theorem, Laplacian solvers
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Sampling

Exact sampling

» From r x N feature matrix A = (¢1]...|¢n)

» To N x N projection kernel K = AT[AAT] " A
Exact sampling (Hough et al., 2006; Kulesza & Taskar, 2012)
Sample X ~ DPP(K)

> Marginals
P[X = B] =detKp

> Chain rule, J = {i1,..., ik}
Plig1 = ilJ] o< Kij — Ki sK, 7 Ky
» Costly: eigen-decomposition + Gram-Schmidt = O(N3 + Nr?)

Rk: Uniform spanning trees (Aldous, 1990; Propp & Wilson, 1998), generation of mazes

/ 16



Sampling

Approximate sampling - 1

» From r x N feature matrix A = (¢1]...|¢n)
Approximate sampling (Anari et al., 2016; Li et al., 2016)
Build a Markov chain, B £ A

» State space B = {B; detB # 0}

» Stationary distribution

« |det B> = Vol? {¢;; i € B} - 1pep

> Basis-exchange graph

» Bo B'=(B\{i})U{j}
> Full analysis: polynomial mixing time
» Local and correlated moves on 3

Rk: Basis-exchange graph (Feder & Mihail, 1992), matroid theory (Oxley, 2003) 8/ 16



Sampling

Approximate sampling - 1

But a dream within a dream?|
[One from the pitiless wave?|

O God! can | not save

[0 God! can I not grasp|

While | weep--while | weep!
Through my fingers to the deep,
I stand amid the roar]

Is but a dream within a dream.|
All that we see or seem

lIs it therefore the less gone?|

In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away|

That my days have been a dream,|
You are not wrong, who deem|
Thus much let me avow-|

lAnd, in parting from you now,
[Take this kiss upon the brow!|
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Sampling
Approximate sampling - 2

» From r x N feature matrix A = (¢1]...[¢n)
Approximate sampling (G., Bardenet & Valko, 2017)
Build a Markov chain, B £ A

» State space B = {B; detB # 0}

» Stationary distribution

x |det B> = Vol? {¢;; i € B} - 1gep

» Wander in a continuous embedding of B

» Geometrical representation of B
> More decorelated moves, empirically faster mixing
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Sampling

Continuous embedding of the state space B

Volume spanned by feature vectors

Z(A) £ A0, 1)V

b3
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1
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Sampling

Continuous embedding of the state space B

Volume spanned by feature vectors

Z(A) £ A0, 1)V

b3

=

By,
®2 B

¢4

$1

admits a natural tiling (Dyer & Frieze, 1994), B = A g
Vol Z(A) = > VolB = |det B|

BeB BeB
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Sampling

Random walk on B i.e. on tiles

» From r x N feature matrix A = (¢1]...[¢n)
» Limiting distribution, B £ A

P[X = B] « VoI?’B - 1pcp

» State space B = {B; detB # 0}
» Continuous embedding of B via tiling of Z(A) = A0, 1]V

By,
By
By
Bos
By
By
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Sampling

Random walk on B i.e. on tiles
Underlying continuous walk
> Z(A) is a polytope (convex)

» Hit-and-run is efficient for convex bodies (Lovisz & Vempala, 2003)
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Random walk on B i.e. on tiles

Sampling

Continuous random walk on Z(A)

T+ m[ﬁfl

R
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Continuous random walk on Z(A) Discrete random walk on B

» Identify the tile in which x lies

~oZ min ¢’y
. yERN
TN st. Ay=x
\‘.If+(¥_\/j(1 Ogyg 1

R

> B, = {i; y,-* E]Oa 1[}
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Sampling

Random walk on B i.e. on tiles

Continuous random walk on Z(A) Discrete random walk on B
» Identify the tile in which x lies
T+ apd
v . T
: vern <
T d st. Ay=x
> Bo={i;y €]0,1]}
Continuous target distribution Discrete target distribution
m(x)dx =) Cg x Ig(x)dx P[B, = B] x / 7(x)dx = Cg x Vol B
B

BeB
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Sampling

Acceptance =1

Continuous target distribution
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BeB
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Sampling
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Continuous target distribution
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Sampling

Vol B(%)

Acceptance = Vol B(x)
Continuous target distribution Discrete target distribution
m(x)dx = Z Vol B x 1g(x)dx P[By = B] Vol B x Vol B = Vol’ B
BeB

P[B.= R, S35

x Vol’ =0
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Sampling

_ Vol B(x)
Acceptance = Vol B(x)
Continuous target distribution Discrete target distribution
m(x)dx = Z Vol B x 1g(x)dx P[By = B] Vol B x Vol B = Vol’ B

BeB
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Some experiments

Behaviour of our chain

Relative error of the estimation of P[{i1, i2,i3} C X] = detKy; ; iy

1.0 1.0
0.8 — zonoSampling |pg

06 — basisExchange

15 20 25 30

# iterations (x10°)

> Better mixing

» More decorelated

Fast sampling of projection DPPs?
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# iterations (x10°) CPU time (s)
> Better mixing » Slower
» More decorelated » Sovle LPs

Efficient sampling of projection DPPs!

14 /16



Some experiments

Summarizing a news article from Slate
Find Y to maximize (Kulesza & Taskar, 2012)

N
1
/ROUGE—lF(Y, Z)DPP(Z2)dZ ~ +; > RoucE-1F (Y, Y))
i=1

where Y; are samples from our Markov chain

0.93¢ zonoSampling ]
basisExchange

0.92f — ==
- T B =

0.91¢ ' !

0.90} - E ]

0.89¢

Yo Y0 Y
Figure 1: Estimation of the integrated cost
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Conclusion

Conclusion

> Provide feature matrix A (full row rank)

Build DPP(AT(AAT)'A)

Continuous embedding of the state space

New bridge MCMC N Optimization = hit-and-run + LPs
Efficient sampling

v
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Mixing time?
> Difficult because of LPs
» Choice of linear objective ¢ in LP (identification of the tile)

v

Generalization

» k-DPPs (Kulesza & Taskar, 2011)
> Generic and continuous DPPs (Hough et al., 2006)
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Conclusion

Conclusion

> Provide feature matrix A (full row rank)

» Build DPP(AT(AAT)"!A)

» Continuous embedding of the state space

> New bridge New bridge MCMC N Optimization = hit-and-run + LPs

» Efficient sampling
Applications:

» ML (Kulesza & Taskar, 2012; Kathuria et al., 2016)

» Graph sampling (Tremblay et al., 2017)

» Monte Carlo with DPPs (Bardenet & Hardy, 2016)
Potential speed-up?

» Starting points

» Specific implementation of the simplex method
Mixing time?

> Difficult because of LPs

» Choice of linear objective ¢ in LP (identification of the tile)
Generalization

» k-DPPs (Kulesza & Taskar, 2011)

» Continuous DPPs (Hough et al., 2006)
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