Efficient approximate sampling of projection determinantal point processes

Guillaume Gautier ${ }^{1,2}$, Rémi Bardenet ${ }^{1}$, and Michal Valko ${ }^{2}$

Centre de Recherche en Informatique,
Signal et Automatique de Lille
${ }^{2}$ Inria Lille

Motivation

Image search/recommendation systems

relevance

relevance $+$
diversity

'bolt' query

Motivation

Extractive text summarization (Kulesza \& Taskar, 2012)

Definition

- $\{1, \ldots, N\}$ indices/labels of items
- images
- sentences
- edges of a graph
- $\operatorname{DPP}(\mathbf{K})$ a measure on subsets of $\{1, \ldots, N\}$
- K a PSD similarity kernel
- $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$ if $\forall S \subseteq\{1, \ldots, N\}$,

$$
\mathbb{P}[S \subseteq \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}
$$

- Existence is guaranteed when $\mathbf{0}_{N} \preceq \mathbf{K} \preceq \mathbf{I}_{N}$

Projection DPPs

- \mathbf{K} is an orthogonal projection matrix
- $\operatorname{Spec} \mathbf{K} \in\{0,1\}^{N}$

Projection DPPs

- \mathbf{K} is an orthogonal projection matrix
- $\operatorname{Spec} \mathbf{K} \in\{0,1\}^{N}$
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} \operatorname{Tr} \mathbf{K}=\operatorname{rank} \mathbf{K}=r$
- Summaries made of r sentences
- Bags of r images

Projection DPPs

- \mathbf{K} is an orthogonal projection matrix
- Spec $\mathbf{K} \in\{0,1\}^{N}$
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} \operatorname{Tr} \mathbf{K}=\operatorname{rank} \mathbf{K}=r$
- Summaries made of r sentences
- Bags of r images
- Gram matrix

$$
\mathbf{K}=\sum_{i=1}^{r} u^{(i)} u^{(i)^{\top}}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}
$$

with $\varphi_{n}=\left(u_{n}^{(1)}, \ldots, u_{n}^{(r)}\right)^{\top}$

Projection DPPs

- \mathbf{K} is an orthogonal projection matrix
- Spec $\mathbf{K} \in\{0,1\}^{N}$
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} \operatorname{Tr} \mathbf{K}=\operatorname{rank} \mathbf{K}=r$
- Summaries made of r sentences
- Bags of r images
- Gram matrix

$$
\mathbf{K}=\sum_{i=1}^{r} u^{(i)} u^{(i)^{\top}}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}
$$

with $\varphi_{n}=\left(u_{n}^{(1)}, \ldots, u_{n}^{(r)}\right)^{\top}$

- Geometrical interpretation

$$
\begin{array}{r}
\mathbb{P}[S \subseteq \mathcal{X}]=\operatorname{det} \mathbf{K}_{S} \\
=\operatorname{Vol}^{2}\left\{\varphi_{i} ; i \in S\right\}
\end{array}
$$

Diversity

- Negative association

$$
\begin{aligned}
\mathbb{P}[\{i, j\} \subseteq \mathcal{X}] & =\left|\begin{array}{cc}
\mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{i j} \\
\mathbf{K}_{i j} & \mathbb{P}[j \in \mathcal{X}]
\end{array}\right| \\
& =\mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]-\mathbf{K}_{i j}^{2} \\
& \leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]
\end{aligned}
$$

Diversity

- Negative association

$$
\begin{aligned}
\mathbb{P}[\{i, j\} \subseteq \mathcal{X}] & =\left|\begin{array}{cc}
\mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{i j} \\
\mathbf{K}_{i j} & \mathbb{P}[j \in \mathcal{X}]
\end{array}\right| \\
& =\mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]-\mathbf{K}_{i j}^{2} \\
& \leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]
\end{aligned}
$$

- The larger $\left|\mathbf{K}_{i j}\right|$ the smaller $\mathbb{P}[\{i, j\} \subseteq \mathcal{X}]$
- Diversity/repulsion
- $\left|\mathbf{K}_{i j}\right|$ yields departure from independence

Diversity

- Negative association

$$
\begin{aligned}
\mathbb{P}[\{i, j\} \subseteq \mathcal{X}] & =\left|\begin{array}{cc}
\mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{i j} \\
\mathbf{K}_{i j} & \mathbb{P}[j \in \mathcal{X}]
\end{array}\right| \\
& =\mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]-\mathbf{K}_{i j}^{2} \\
& \leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]
\end{aligned}
$$

- The larger $\left|\mathbf{K}_{i j}\right|$ the smaller $\mathbb{P}[\{i, j\} \subseteq \mathcal{X}]$
- Diversity/repulsion
- $\left|\mathbf{K}_{i j}\right|$ yields departure from independence

Setup

- Build the $r \times N$ feature matrix

$$
\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)
$$

- If $\left\|\phi_{i}\right\|^{2}=1$, 'angles' encode diversity
- q_{i} measures relevance of item i

Setup

- Build the $r \times N$ feature matrix

$$
\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)
$$

Assumption

- If $\left\|\phi_{i}\right\|^{2}=1$, 'angles' encode diversity
- q_{i} measures relevance of item i

Setup

- Build the $r \times N$ feature matrix

Assumption

$$
\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)
$$

\mathbf{A} is full row rank i.e. $\operatorname{rank} \mathbf{A}=r$

- If $\left\|\phi_{i}\right\|^{2}=1$, 'angles' encode diversity
- q_{i} measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A A}^{\top}\right]^{-1} \mathbf{A}$

Setup

- Build the $r \times N$ feature matrix

Assumption

$$
\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)
$$

\mathbf{A} is full row rank i.e. $\operatorname{rank} \mathbf{A}=r$

- If $\left\|\phi_{i}\right\|^{2}=1$, 'angles' encode diversity
- q_{i} measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A A}^{\top}\right]^{-1} \mathbf{A}$
- If $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$,
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} r$
- For $B=\left\{i_{1}, \ldots, i_{r}\right\}$,

$$
\mathbb{P}[\mathcal{X}=B] \propto\left|\operatorname{det} \mathbf{A}_{: B}\right|^{2}=\operatorname{Vol}^{2}\left\{\sqrt{q_{i}} \phi_{i} ; i \in B\right\}
$$

Setup

- Build the $r \times N$ feature matrix

$$
\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)
$$

Assumption

\mathbf{A} is full row rank i.e. $\operatorname{rank} \mathbf{A}=r$

- If $\left\|\phi_{i}\right\|^{2}=1$, 'angles' encode diversity
- q_{i} measures relevance of item i
- Build the $N \times N$ projection kernel $\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A A}^{\top}\right]^{-1} \mathbf{A}$
- If $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$,
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} r$
- For $B=\left\{i_{1}, \ldots, i_{r}\right\}$,

$$
\mathbb{P}[\mathcal{X}=B] \propto\left|\operatorname{det} \mathbf{A}_{: B}\right|^{2}=\operatorname{Vol}^{2}\left\{\sqrt{q_{i}} \phi_{i} ; i \in B\right\}
$$

- DPP(K) has support

$$
\mathcal{B} \triangleq\{B ;|B|=r, \operatorname{det} \mathbf{A}: B \neq 0\}
$$

i.e. collection of columns of \mathbf{A} forming a basis

One example

Uniform spanning trees (Lyons, 2003)

Vertex-edge incidence matrix
a
b
c
$d$$\left[\begin{array}{ccccc}e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\ -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right]$

One example

Uniform spanning trees (Lyons, 2003)

$$
\mathbf{A}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{ccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
-1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

One example

Uniform spanning trees (Lyons, 2003)

$\mathbf{A}=$| a |
| :--- |
| b |
| c |
| d |\(\left[\begin{array}{ccccc}e_{1} \& e_{2} \& e_{3} \& e_{4} \& e_{5}

-1 \& -1 \& 0 \& 0 \& 0

1 \& 0 \& -1 \& -1 \& 0

0 \& 0 \& 1 \& 0 \& -1

0 \& 1 \& 0 \& 1 \& 1\end{array}\right]\)

One example

Uniform spanning trees (Lyons, 2003)

$$
\mathbf{A}=\begin{gathered}
\\
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{ccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
-1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- $\operatorname{DPP}(\mathbf{K})$ is a measure on the edge set of G
- $\mathcal{B}=$ collection of spanning trees of G
- $\mathbb{P}[\mathcal{X}=B]=\frac{\left|\operatorname{det} \mathbf{A}_{: B}\right|^{2}}{\operatorname{det} \mathbf{A A}^{\top}}=\frac{1}{|\mathcal{B}|} \mathbb{1}_{B \in \mathcal{B}}$

$$
\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A} \mathbf{A}^{\top}\right]^{-1} \mathbf{A}
$$

Exact sampling

- From $r \times N$ feature matrix $\mathbf{A}=\left(\phi_{1}|\ldots| \phi_{N}\right)$
- To $N \times N$ projection kernel $\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A A}^{\top}\right]^{-1} \mathbf{A}$

Exact sampling (Hough et al., 2006; Kulesza \& Taskar, 2012)
Sample $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$

- Marginals

$$
\mathbb{P}[\mathcal{X}=B]=\operatorname{det} \mathbf{K}_{B}
$$

- Chain rule, $J=\left\{i_{1}, \ldots, i_{k}\right\}$

$$
\mathbb{P}\left[i_{k+1}=i \mid J\right] \propto \mathbf{K}_{i i}-\mathbf{K}_{i, J} \mathbf{K}_{J}^{-1} \mathbf{K}_{J, i}
$$

- Costly: eigen-decomposition + Gram-Schmidt $=\mathcal{O}\left(N^{3}+N r^{2}\right)$

Approximate sampling - 1

- From $r \times N$ feature matrix $\mathbf{A}=\left(\phi_{1}|\ldots| \phi_{N}\right)$

Approximate sampling (Anari et al., 2016; Li et al., 2016)
Build a Markov chain, $\mathbf{B} \triangleq \mathbf{A}_{: B}$

- State space $\mathcal{B} \triangleq\{B ; \operatorname{det} \mathbf{B} \neq 0\}$
- Stationary distribution

$$
\propto|\operatorname{det} \mathbf{B}|^{2}=\operatorname{Vol}^{2}\left\{\phi_{i} ; i \in B\right\} \cdot \mathbb{1}_{B \in \mathcal{B}}
$$

- Basis-exchange graph
- $B \leftrightarrow B^{\prime}=(B \backslash\{i\}) \cup\{j\}$
- Full analysis: polynomial mixing time
- Local and correlated moves on \mathcal{B}

Approximate sampling - 1

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 1

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 1

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 1

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 2

- From $r \times N$ feature matrix $\mathbf{A}=\left(\phi_{1}|\ldots| \phi_{N}\right)$

Approximate sampling (G., Bardenet \& Valko, 2017)
Build a Markov chain, $\mathbf{B} \triangleq \mathbf{A}_{: B}$

- State space $\mathcal{B} \triangleq\{B ; \operatorname{det} \mathbf{B} \neq 0\}$
- Stationary distribution

$$
\propto|\operatorname{det} \mathbf{B}|^{2}=\operatorname{Vol}^{2}\left\{\phi_{i} ; i \in B\right\} \cdot \mathbb{1}_{B \in \mathcal{B}}
$$

- Wander in a continuous embedding of \mathcal{B}
- Geometrical representation of \mathcal{B}
- More decorelated moves, empirically faster mixing

Approximate sampling - 2

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 2

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 2

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Approximate sampling - 2

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Continuous embedding of the state space \mathcal{B}

Volume spanned by feature vectors

$$
\mathcal{Z}(\mathbf{A}) \triangleq \mathbf{A}[0,1]^{N}
$$

Continuous embedding of the state space \mathcal{B}

Volume spanned by feature vectors

admits a natural tiling (Dyer \& Frieze, 1994), $\mathbf{B} \triangleq \mathbf{A}: B$

$$
\operatorname{Vol} \mathcal{Z}(\mathbf{A})=\sum_{B \in \mathcal{B}} \operatorname{Vol} \mathbf{B}=\sum_{B \in \mathcal{B}}|\operatorname{det} \mathbf{B}|
$$

Random walk on \mathcal{B} i.e. on tiles

- From $r \times N$ feature matrix $\mathbf{A}=\left(\phi_{1}|\ldots| \phi_{N}\right)$
- Limiting distribution, $\mathbf{B} \triangleq \mathbf{A}_{: B}$

$$
\mathbb{P}[\mathcal{X}=B] \propto \mathrm{Vol}^{2} \mathbf{B} \cdot \mathbb{1}_{B \in \mathcal{B}}
$$

- State space $\mathcal{B} \triangleq\{B ; \operatorname{det} \mathbf{B} \neq 0\}$
- Continuous embedding of \mathcal{B} via tiling of $\mathcal{Z}(\mathbf{A})=\mathbf{A}[0,1]^{N}$

Random walk on \mathcal{B} i.e. on tiles

Underlying continuous walk

- $\mathcal{Z}(\mathbf{A})$ is a polytope (convex)
- Hit-and-run is efficient for convex bodies (Lovász \& Vempala, 2003)

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$
Discrete random walk on \mathcal{B}

- Identify the tile in which x lies

$$
\min _{y \in \mathbb{R}^{N}} c^{\top} y
$$

$$
\text { s.t. } \quad \mathbf{A} y=x
$$

$$
0 \leq y \leq 1
$$

- $B_{x}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$
Discrete random walk on \mathcal{B}

- Identify the tile in which x lies

$$
\min _{y \in \mathbb{R}^{N}} c^{\top} y
$$

$$
\text { s.t. } \quad \mathbf{A} y=x
$$

$$
0 \leq y \leq 1
$$

- $B_{x}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$

Continuous target distribution

$$
\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} C_{B} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

Random walk on \mathcal{B} i.e. on tiles

Continuous random walk on $\mathcal{Z}(\mathbf{A})$

Continuous target distribution

$$
\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} C_{B} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

- Identify the tile in which x lies

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{N}} & c^{\top} y \\
\text { s.t. } & \mathbf{A} y=x \\
& 0 \leq y \leq 1
\end{array}
$$

- $B_{x}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$

Discrete random walk on \mathcal{B}

Discrete target distribution

$$
\mathbb{P}\left[B_{x}=B\right] \propto \int_{\mathbf{B}} \pi(x) \mathrm{d} x=C_{B} \times \operatorname{Vol} \mathbf{B}
$$

Acceptance $=1$

Continuous target distribution

$$
\pi(x) \mathrm{d} x=\mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

Acceptance $=1$

Continuous target distribution

$$
\pi(x) \mathrm{d} x=\mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

Discrete target distribution

Acceptance $=1$

Continuous target distribution

$$
\pi(x) \mathrm{d} x=\mathbb{1}_{\mathcal{Z}(\mathbf{A})}(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

Discrete target distribution

$$
\mathbb{P}\left[B_{x}=B\right] \propto 1 \times \operatorname{Vol} \mathbf{B}=\operatorname{Vol}^{1} \mathbf{B}
$$

Acceptance $=\frac{\operatorname{Vol} B(\tilde{x})}{\operatorname{Vol} B(x)}$
Continuous target distribution

$$
\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} \operatorname{Vol} \mathbf{B} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

Acceptance $=\frac{\operatorname{Vol} B(\tilde{x})}{\operatorname{Vol} B(x)}$
Continuous target distribution
Discrete target distribution
$\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} \operatorname{Vol} \mathbf{B} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x$
$\mathbb{P}\left[B_{x}=B\right] \propto \mathrm{Vol} \mathbf{B} \times \operatorname{Vol} \mathbf{B}=\mathrm{Vol}^{2} \mathbf{B}$

Acceptance $=\frac{\operatorname{Vol} B(\tilde{x})}{\operatorname{Vol} B(x)}$
Continuous target distribution
Discrete target distribution
$\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} \operatorname{Vol} \mathbf{B} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x$
$\mathbb{P}\left[B_{x}=B\right] \propto \operatorname{Vol} \mathbf{B} \times \operatorname{Vol} \mathbf{B}=\mathrm{Vol}^{2} \mathbf{B}$

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}\left[\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{i_{1}, i_{2}, i_{3}\right\}}$

- Better mixing
- More decorelated

Fast sampling of projection DPPs?

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}\left[\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{i_{1}, i_{2}, i_{3}\right\}}$

- Better mixing
- More decorelated
- Slower
- Sovle LPs

Fast sampling of projection DPPs?

Behaviour of our chain

Relative error of the estimation of $\mathbb{P}\left[\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{i_{1}, i_{2}, i_{3}\right\}}$

- Better mixing
- More decorelated
- Slower
- Sovle LPs

Efficient sampling of projection DPPs!

Summarizing a news article from Slate

Find Y to maximize (Kulesza \& Taskar, 2012)

$$
\int \operatorname{RovGE}-1 \mathrm{~F}(Y, Z) \operatorname{DPP}(Z) d Z \approx \frac{1}{N} \sum_{i=1}^{N} \operatorname{RovGE}-1 \mathrm{~F}\left(Y, Y_{i}\right)
$$

where Y_{i} are samples from our Markov chain

Figure 1: Estimation of the integrated cost

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling
- Applications:
- ML (Kulesza \& Taskar, 2012; Kathuria et al., 2016)
- Graph sampling (Tremblay et al., 2017)
- Monte Carlo with DPPs (Bardenet \& Hardy, 2016)

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling
- Applications:
- ML (Kulesza \& Taskar, 2012; Kathuria et al., 2016)
- Graph sampling (Tremblay et al., 2017)
- Monte Carlo with DPPs (Bardenet \& Hardy, 2016)
- Potential speed-up?
- Starting points
- Specific implementation of the simplex method

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling
- Applications:
- ML (Kulesza \& Taskar, 2012; Kathuria et al., 2016)
- Graph sampling (Tremblay et al., 2017)
- Monte Carlo with DPPs (Bardenet \& Hardy, 2016)
- Potential speed-up?
- Starting points
- Specific implementation of the simplex method
- Mixing time?
- Difficult because of LPs
- Choice of linear objective c in LP (identification of the tile)

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling
- Applications:
- ML (Kulesza \& Taskar, 2012; Kathuria et al., 2016)
- Graph sampling (Tremblay et al., 2017)
- Monte Carlo with DPPs (Bardenet \& Hardy, 2016)
- Potential speed-up?
- Starting points
- Specific implementation of the simplex method
- Mixing time?
- Difficult because of LPs
- Choice of linear objective c in LP (identification of the tile)
- Generalization
- k-DPPs (Kulesza \& Taskar, 2011)
- Generic and continuous DPPs (Hough et al., 2006)

Conclusion

- Provide feature matrix \mathbf{A} (full row rank)
- Build $\operatorname{DPP}\left(\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1} \mathbf{A}\right)$
- Continuous embedding of the state space
- New bridge New bridge MCMC \cap Optimization $=$ hit-and-run + LPs
- Efficient sampling
- Applications:
- ML (Kulesza \& Taskar, 2012; Kathuria et al., 2016)
- Graph sampling (Tremblay et al., 2017)
- Monte Carlo with DPPs (Bardenet \& Hardy, 2016)
- Potential speed-up?
- Starting points
- Specific implementation of the simplex method
- Mixing time?
- Difficult because of LPs
- Choice of linear objective c in LP (identification of the tile)
- Generalization
- k-DPPs (Kulesza \& Taskar, 2011)
- Continuous DPPs (Hough et al., 2006)

POSTER \#80

References [1]

Aldous, D. J. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450-465, 1990.
Anari, N., Gharan, S. O., and Rezaei, A. Monte-Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes. In Conference on Learning Theory, pp. 23-26, 2016.
Bardenet, R. and Hardy, A. Monte-Carlo with determinantal point processes. arXiv preprint arXiv:1605.00361, 2016.
Dyer, M. and Frieze, A. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Mathematical Programming, 64(1-3):1-16, 1994.
Feder, T. and Mihail, M. Balanced matroids. Proceedings of the twenty-fourth annual ACM, pp. 26-38, 1992.
Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B. Determinantal processes and independence. Probability surveys, 2006.
Kathuria, T., Deshpande, A., and Kohli, P. Batched gaussian process bandit optimization via determinantal point processes. Neural Information Processing Systems, pp. pp. 4206-4214, 2016.

Kulesza, A. and Taskar, B. Determinantal point processes for machine learning. Foundations and Trends in Machine Learning, 5(2-3):123-286, 2012.
Kulesza, A. and Taskar, B. k-dpps: Fixed-size determinantal point processes. International Conference on Machine Learning, pp. 1193-1200, 2011.

References [2]

Li, C., Jegelka, S., and Sra, S. Fast mixing markov chains for strongly rayleigh measures, dpps, and constrained sampling. In Neural Information Processing Systems, pp. 4188-4196, 2016.
Lovász, L. and Vempala, S. Hit and run is fast and fun. Technical Report MSR-TR-2003-05, 2003.

Lyons, R. Determinantal probability measures. Publications Mathématiques de I'Institut des Hautes Études Scientifiques, 2003.
Oxley, J. What is a matroid? Cubo Matemática Educacional, 5.3:179-218, 2003.
Propp, J. G. and Wilson, D. B. How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. Journal of Algorithms, 27(2): 170-217, 1998.
Tremblay, N., Amblard, P.-O., and Barthelme, S. Graph sampling with determinantal processes. working paper or preprint, March 2017.

