On sampling determinantal point processes

Guillaume Gautier

Ph.D. defense

Advisors: Rémi Bardenet, Michal Valko

May 19, 2020

Text summarization

Extract diverse sentences of a large corpus to build a representative summary.

Recommendation systems

Two possible sets of answers of an image search engine to the query "bolt".

relevance

relevance
$+$ diversity

- Use DPPs to enforce diversity among the recommended items.

Numerical integration

Use random repulsive points as quadrature nodes to estimate an integral

$$
\int f(x) \mu(\mathrm{d} x) \approx \sum_{n=1}^{N} \omega_{n} f\left(x_{n}\right) .
$$

Bardenet and Hardy $(2016,2020)$

- Prove faster rate of convergence with DPP points than i.i.d. points.
- Efficient sampler to put theory into practice?

My Ph.D. in a nutshell

Finite projection DPP
Approximate sampling
Linear programming

$$
\text { ICML, } 2017
$$

β-ensembles
Gibbs sampling
Random matrices

Submitted, 2020

DPP sampling

Monte Carlo integration
Exact sampling
Random linear system

NeurIPS, 2019

Python toolbox DPPy © 日
Reproducible research

```
from dppy import *
#
dpp.sample()
```

JMLR-MLOSS, 2019

My Ph.D. in a nutshell

Finite projection DPP
Approximate sampling
Linear programming

ICML, 2017
β-ensembles
Gibbs sampling
Random matrices

Submitted, 2020

Continuous setting

DPP sampling

Monte Carlo integration
Exact sampling
Random linear system

NeurIPS, 2019

Python toolbox DPPy © 日
Reproducible research

```
from dppy import *
dpp.sample()
```

JMLR-MLOSS, 2019

My Ph.D. in a nutshell

Finite setting

Finite projection DPP
Approximate sampling
Linear programming

ICML, 2017
β-ensembles
Gibbs sampling
Random matrices

Submitted, 2020

Continuous setting

DPP sampling

Monte Carlo integration Exact sampling Random linear system

NeurIPS, 2019

Python toolbox DPPy © 日
Reproducible research

```
from dppy import *
#
dpp.sample()
```

JMLR-MLOSS, 2019

My Ph.D. in a nutshell

Finite setting

Finite projection DPP
Approximate sampling
Linear programming

ICML, 2017

Continuous setting
β-ensembles
Gibbs sampling
Random matrices

Submitted, 2020

Continuous setting

DPP sampling

Monte Carlo integration Exact sampling Random linear system

NeurIPS, 2019

Python toolbox DPPy ©
Reproducible research

```
from dppy import *
dpp.sample()
```

JMLR-MLOSS, 2019

My Ph.D. in a nutshell

Finite setting

Continuous setting

Continuous setting

DPP sampling

Software engineering

Monte Carlo integration Exact sampling Random linear system

NeurIPS, 2019

Python toolbox DPPy ©
Reproducible research
from dppy import * \# [...]
dpp.sample ()
JMLR-MLOSS, 2019

Focus of the presentation

Finite setting

β-ensembles
Gibbs sampling
Random matrices

Submitted, 2020

DPP sampling

Monte Carlo integration Exact sampling Random linear system

NeurIPS, 2019

DPPy 0
Reproducible research

```
from dppy import *
#
dpp.sample()
```

JMLR-MLOSS, 2019

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion

Summary of contributions
Open questions and perspectives

Some insights on finite DPPs

- Point process

Some insights on finite DPPs

- Point process

- Diversity

Some insights on finite DPPs

- Point process

- Diversity
- Similarity matrix

Some insights on finite DPPs

- Point process

- Diversity

$$
\mathbb{P}[\{\in, \mathbf{x}\} \subset \mathcal{X}] \geq \mathbb{P}[\{\text { 国, 园 }\} \subset \mathcal{X}]
$$

- Similarity matrix

- Inclusion probabilities

Some insights on finite DPPs

- Point process

- Diversity
- Similarity matrix

- Inclusion probabilities
- Sufficient conditions for existence

$$
\mathbf{K}^{\top}=\mathbf{K} \quad \text { and } \quad 0 \preceq \mathbf{K} \preceq I .
$$

Overview

Introduction

DPP basics

Some insights on finite DPPs

Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion

Summary of contributions
Open questions and perspectives

Finite projection DPP

Definition

Consider $\mathbf{K} \in \mathbb{R}^{M \times M}$ such that $\mathbf{K}^{\top}=\mathbf{K}$ and $\mathbf{K}^{2}=\mathbf{K}$. The point process \mathcal{X} defined by

$$
\mathbb{P}[S \subset \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}, \quad \forall S \subset\{1, \ldots, M\}
$$

is called a projection DPP with kernel \mathbf{K}.

Finite projection DPP

Definition

Consider $\mathbf{K} \in \mathbb{R}^{M \times M}$ such that $\mathbf{K}^{\top}=\mathbf{K}$ and $\mathbf{K}^{2}=\mathbf{K}$. The point process \mathcal{X} defined by

$$
\mathbb{P}[S \subset \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}, \quad \forall S \subset\{1, \ldots, M\}
$$

is called a projection DPP with kernel \mathbf{K}.

- Samples have fixed cardinality

$$
N \triangleq|\mathcal{X}|=\operatorname{rank} \mathbf{K} .
$$

Finite projection DPP

Definition

Consider $\mathbf{K} \in \mathbb{R}^{M \times M}$ such that $\mathbf{K}^{\top}=\mathbf{K}$ and $\mathbf{K}^{2}=\mathbf{K}$.
The point process \mathcal{X} defined by

$$
\mathbb{P}[S \subset \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}, \quad \forall S \subset\{1, \ldots, M\}
$$

is called a projection DPP with kernel \mathbf{K}.

- Samples have fixed cardinality

$$
N \triangleq|\mathcal{X}|=\operatorname{rank} \mathbf{K} .
$$

- The likelihood reads

$$
\mathbb{P}[\mathcal{X}=B]=\operatorname{det} \mathbf{K}_{B} \mathbb{1}_{|B|=N} .
$$

Finite projection DPP

Example

Consider the $N \times M$ feature matrix $\boldsymbol{\Phi}=\left[\phi_{1}, \ldots, \phi_{M}\right]$, such that rank $\boldsymbol{\Phi}=N$, and build the kernel

$$
\mathbf{K}=\boldsymbol{\Phi}^{\top}\left[\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}\right]^{-1} \boldsymbol{\Phi}
$$

Finite projection DPP

Example

Consider the $N \times M$ feature matrix $\boldsymbol{\Phi}=\left[\phi_{1}, \ldots, \phi_{M}\right]$, such that rank $\boldsymbol{\Phi}=N$, and build the kernel

$$
\mathbf{K}=\boldsymbol{\Phi}^{\top}\left[\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}\right]^{-1} \boldsymbol{\Phi}
$$

- The likelihood reads

$$
\mathbb{P}[\mathcal{X}=B]=\frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}{\operatorname{det} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}} \mathbb{1}_{|B|=N} .
$$

Finite projection DPP

Example

Consider the $N \times M$ feature matrix $\boldsymbol{\Phi}=\left[\phi_{1}, \ldots, \phi_{M}\right]$, such that $\underline{\operatorname{rank} \boldsymbol{\Phi}=N}$, and build the kernel

$$
\mathbf{K}=\boldsymbol{\Phi}^{\top}\left[\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}\right]^{-1} \boldsymbol{\Phi}
$$

- The likelihood reads

$$
\mathbb{P}[\mathcal{X}=B]=\frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}{\operatorname{det} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}} \mathbb{1}_{|B|=N} .
$$

- Geometrically, e.g., for $N=2$,

Finite projection DPP

Example

Consider the $N \times M$ feature matrix $\boldsymbol{\Phi}=\left[\phi_{1}, \ldots, \phi_{M}\right]$, such that $\underline{\operatorname{rank} \boldsymbol{\Phi}=N}$, and build the kernel

$$
\mathbf{K}=\boldsymbol{\Phi}^{\top}\left[\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}\right]^{-1} \boldsymbol{\Phi}
$$

- The likelihood reads

$$
\mathbb{P}[\mathcal{X}=B]=\frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}{\operatorname{det} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}} \mathbb{1}_{|B|=N} .
$$

- Geometrically, e.g., for $N=2$,

$$
\mathbb{P}[\mathcal{X}=\{,
$$

Finite projection DPP

Example

Consider the $N \times M$ feature matrix $\boldsymbol{\Phi}=\left[\phi_{1}, \ldots, \phi_{M}\right]$, such that $\underline{\operatorname{rank} \boldsymbol{\Phi}}=N$, and build the kernel

$$
\mathbf{K}=\boldsymbol{\Phi}^{\top}\left[\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}\right]^{-1} \boldsymbol{\Phi}
$$

- The likelihood reads

$$
\mathbb{P}[\mathcal{X}=B]=\frac{\left(\operatorname{det} \boldsymbol{\boldsymbol { \Phi } _ { : B }}\right)^{2}}{\operatorname{det} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}} \mathbb{1}_{|B|=N} .
$$

- Geometrically, e.g., for $N=2$,

$$
\mathbb{P}[\mathcal{X}=\{\in, \hat{\Delta}\}] \propto \text { volume }^{2}
$$

- The support is formed by collections of columns of $\boldsymbol{\Phi}$ forming a basis of \mathbb{R}^{N},

$$
\mathcal{B} \triangleq\left\{B ;|B|=N, \text { and } \operatorname{det} \boldsymbol{\Phi}_{: B} \neq 0\right\} .
$$

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion

Summary of contributions
Open questions and perspectives

Continuous projection DPP

Definition

Let $\phi_{0}, \ldots, \phi_{N-1}$ be orthonormal functions in $L^{2}(\mathbb{X}, \mu)$ and

$$
K(x, y)=\sum_{k=0}^{N-1} \phi_{k}(x) \phi_{k}(y)
$$

Take $\left(x_{1}, \ldots, x_{N}\right)$ with joint probability distribution

$$
\frac{1}{N!} \operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{N} \prod_{n=1}^{N} \mu\left(\mathrm{~d} x_{n}\right) .
$$

Then $\mathcal{X} \triangleq\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{X}$ defines a projection DPP with kernel K.

Continuous projection DPP

Definition

Let $\phi_{0}, \ldots, \phi_{N-1}$ be orthonormal functions in $L^{2}(\mathbb{X}, \mu)$ and

$$
K(x, y)=\sum_{k=0}^{N-1} \phi_{k}(x) \phi_{k}(y)
$$

Take $\left(x_{1}, \ldots, x_{N}\right)$ with joint probability distribution

$$
\frac{1}{N!} \operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{N} \prod_{n=1}^{N} \mu\left(\mathrm{~d} x_{n}\right) .
$$

Then $\mathcal{X} \triangleq\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{X}$ defines a projection DPP with kernel K.
Considering

- $\mathbb{X}=\{1, \ldots, M\}$,
- $\mu=\sum_{m=1}^{M} \delta_{m}$,
one recovers the finite case with $\mathbf{K}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}$ and $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}=I_{N}$.

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion

Summary of contributions
Open questions and perspectives

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\mathbb{P}\left[x_{1}=x\right]=\frac{1}{N}\left\|\phi_{x}\right\|^{2},
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\begin{aligned}
\mathbb{P}\left[x_{1}=x\right] & =\frac{1}{N}\left\|\phi_{x}\right\|^{2}, \\
\mathbb{P}\left[x_{2}=x \mid x_{1}\right] & =\frac{1}{N-1} \text { distance }^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right),
\end{aligned}
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\begin{aligned}
\mathbb{P}\left[x_{1}=x\right] & =\frac{1}{N}\left\|\phi_{x}\right\|^{2}, \\
\mathbb{P}\left[x_{2}=x \mid x_{1}\right] & =\frac{1}{N-1} \text { distance }^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right),
\end{aligned}
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\begin{aligned}
\mathbb{P}\left[x_{1}=x\right] & =\frac{1}{N}\left\|\phi_{x}\right\|^{2}, \\
\mathbb{P}\left[x_{2}=x \mid x_{1}\right] & =\frac{1}{N-1} \operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right), \\
& \vdots \\
\mathbb{P}\left[x_{N}=x \mid x_{1: N-1}\right] & =\text { distance }^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}, \ldots, \phi_{x_{N-1}}\right\}\right) .
\end{aligned}
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\begin{aligned}
\mathbb{P}\left[x_{1}=x\right] & =\frac{1}{N}\left\|\phi_{x}\right\|^{2}, \\
\mathbb{P}\left[x_{2}=x \mid x_{1}\right] & =\frac{1}{N-1} \operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right), \\
& \vdots \\
\mathbb{P}\left[x_{N}=x \mid x_{1: N-1}\right] & =\text { distance }^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}, \ldots, \phi_{x_{N-1}}\right\}\right) .
\end{aligned}
$$

- The likelihood of $\left(x_{1}, \ldots, x_{N}\right)$ reads

$$
\mathbb{P}\left[\left(x_{1}, \ldots, x_{n}\right)\right]=\frac{1}{N!} \text { volume }^{2}\left\{\phi_{x_{1}}, \ldots, \phi_{x_{N}}\right\}=\frac{1}{N!} \operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

Sequential sampling using the chain rule

The goal is to generate a random subset \mathcal{X}, such that

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

(Hough et al., 2006; Gillenwater, 2014)
Consider the eigendecomposition $\mathbf{K}=\boldsymbol{\Phi}^{\boldsymbol{\top}} \boldsymbol{\Phi}$, where $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{\top}}=I_{N}$.

- Sample $\left(x_{1}, \ldots, x_{N}\right)$ in the following way

$$
\begin{aligned}
\mathbb{P}\left[x_{1}=x\right] & =\frac{1}{N}\left\|\phi_{x}\right\|^{2}, \\
\mathbb{P}\left[x_{2}=x \mid x_{1}\right] & =\frac{1}{N-1} \operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right), \\
& \vdots \\
\mathbb{P}\left[x_{N}=x \mid x_{1: N-1}\right] & =\text { distance }^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}, \ldots, \phi_{x_{N-1}}\right\}\right) .
\end{aligned}
$$

- The likelihood of $\left(x_{1}, \ldots, x_{N}\right)$ reads

$$
\mathbb{P}\left[\left(x_{1}, \ldots, x_{n}\right)\right]=\frac{1}{N!} \text { volume }^{2}\left\{\phi_{x_{1}}, \ldots, \phi_{x_{N}}\right\}=\frac{1}{N!} \operatorname{det} \mathbf{K}_{\left\{x_{1}, \ldots, x_{N}\right\}} .
$$

- The procedure is akin to Gram-Schmidt orthogonalization $\mathcal{O}\left(M N^{2}\right)$.

Illustration of the chain rule $(M=24, N=2)$

Text to summarize using $N=2$ sentences.

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save,
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Illustration of the chain rule $(M=24, N=2)$

Select the first sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{1}=x\right]=\frac{1}{2}\left\|\phi_{x}\right\|^{2}
$$

Illustration of the chain rule $(M=24, N=2)$

Select the first sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{1}=x\right]=\frac{1}{2}\left\|\phi_{x}\right\|^{2}
$$

Illustration of the chain rule $(M=24, N=2)$

Select the first sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{1}=x\right]=\frac{1}{2}\left\|\phi_{x}\right\|^{2}
$$

Illustration of the chain rule $(M=24, N=2)$

Select the first sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{1}=x\right]=\frac{1}{2}\left\|\phi_{x}\right\|^{2}
$$

Illustration of the chain rule $(M=24, N=2)$

Select the second sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
OGod! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And lhold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{2}=x \mid x_{1}\right]=\operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right) .
$$

Illustration of the chain rule $(M=24, N=2)$

Select the second sentence,

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
OGod! can I not save
Them with a tighter clasp?
OGod! can l not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And lhold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[x_{2}=x \mid x_{1}\right]=\operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right) .
$$

Illustration of the chain rule $(M=24, N=2)$

Select the second sentence,

$$
\mathbb{P}\left[x_{2}=x \mid x_{1}\right]=\operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right) .
$$

Illustration of the chain rule $(M=24, N=2)$

Select the second sentence,

$$
\mathbb{P}\left[x_{2}=x \mid x_{1}\right]=\operatorname{distance}^{2}\left(\phi_{x}, \operatorname{span}\left\{\phi_{x_{1}}\right\}\right) .
$$

Illustration of the chain rule $(M=24, N=2)$

Output summary.

But a dream within a dream?
Is all that we see or seem One from the pitiless wave?

O God! can I not save

Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
Istand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

$$
\mathbb{P}\left[\mathcal{X}=\left\{x_{1}, x_{2}\right\}\right]=\text { volume }^{2}\left\{\phi_{x_{1}}, \phi_{x_{2}}\right\}=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}\right\}} .
$$

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPs
Transition
Fast sampling from β-ensembles

Conclusion

Summary of contributions
Open questions and perspectives

The basis-exchange walk

Metropolis Hastings kernel

(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

- Starting from $B_{0} \in \mathcal{B}$.

The basis-exchange walk

Metropolis Hastings kernel

(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

- Starting from $B_{0} \in \mathcal{B}$.
- Transitions

$$
B \rightarrow \widetilde{B}=(B \backslash\{s\}) \cup\{t\},
$$

where $s \sim \operatorname{Uniform}(B)$ and $t \sim \operatorname{Uniform}\left(B^{C}\right)$.

The basis-exchange walk

Metropolis Hastings kernel

(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

- Starting from $B_{0} \in \mathcal{B}$.
- Transitions

$$
B \rightarrow \widetilde{B}=(B \backslash\{s\}) \cup\{t\},
$$

where $s \sim \operatorname{Uniform}(B)$ and $t \sim \operatorname{Uniform}\left(B^{C}\right)$.

- Acceptance probability (lazy)

$$
\frac{1}{2} \min \left(1, \frac{\operatorname{det} \mathbf{K}_{\widetilde{B}}}{\operatorname{det} \mathbf{K}_{B}}\right)=\frac{1}{2} \min \left(1, \frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: \widetilde{B}}\right)^{2}}{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}\right) .
$$

The basis-exchange walk

Metropolis Hastings kernel
(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

- Starting from $B_{0} \in \mathcal{B}$.
- Transitions

$$
B \rightarrow \widetilde{B}=(B \backslash\{s\}) \cup\{t\},
$$

where $s \sim \operatorname{Uniform}(B)$ and $t \sim \operatorname{Uniform}\left(B^{C}\right)$.

- Acceptance probability (lazy)

$$
\frac{1}{2} \min \left(1, \frac{\operatorname{det} \mathbf{K}_{\tilde{B}}}{\operatorname{det} \mathbf{K}_{B}}\right)=\frac{1}{2} \min \left(1, \frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: \tilde{B}}\right)^{2}}{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}\right) .
$$

- Mixing time

$$
\mathcal{O}\left(M N \log \left(\log \left({\frac{1}{\operatorname{det} \mathbf{K}_{B_{0}}}}\right)\right)\right) .
$$

The basis-exchange walk

Metropolis Hastings kernel
(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

- Starting from $B_{0} \in \mathcal{B}$.
- Transitions

$$
B \rightarrow \widetilde{B}=(B \backslash\{s\}) \cup\{t\},
$$

where $s \sim \operatorname{Uniform}(B)$ and $t \sim \operatorname{Uniform}\left(B^{C}\right)$.

- Acceptance probability (lazy)

$$
\frac{1}{2} \min \left(1, \frac{\operatorname{det} \mathbf{K}_{\tilde{B}}}{\operatorname{det} \mathbf{K}_{B}}\right)=\frac{1}{2} \min \left(1, \frac{\left(\operatorname{det} \boldsymbol{\Phi}_{: \tilde{B}}\right)^{2}}{\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}}\right) .
$$

- Mixing time

$$
\mathcal{O}\left(M N \log \left(\log \left({\frac{1}{\operatorname{det} \mathbf{K}_{B_{0}}}}\right)\right)\right) .
$$

- (naive) Transition cost $\mathcal{O}\left(N^{3}\right)$.

Illustration of the basis-exchange walk ($M=24, N=7$)

$B_{0}=\{1,3,9,12,13,18,24\}$

```
But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!
```


Illustration of the basis-exchange walk ($M=24, N=7$)

$$
B_{0}=\{1,3,9,12,13,18,24\} \quad B_{1}=\left(B_{0} \backslash\{24\}\right) \cup\{10\}
$$

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow--
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Illustration of the basis-exchange walk $(M=24, N=7)$

$$
B_{0}=\{1,3,9,12,13,18,24\} \quad B_{1}=\left(B_{0} \backslash\{24\}\right) \cup\{10\} \quad B_{2}=\left(B_{1} \backslash\{10\}\right) \cup\{22\}
$$

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now, Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPs
Transition
Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives

Conceptual shift: sampling by solving randomized linear programs

Continuous embedding of the support

The support of finite projection DPPs, characterized by

$$
\mathcal{B} \triangleq\left\{B ;|B|=N, \text { and } \operatorname{det} \boldsymbol{\Phi}_{: B} \neq 0\right\},
$$

has the following geometrical representation.

Continuous embedding of the support

The support of finite projection DPPs, characterized by

$$
\mathcal{B} \triangleq\left\{B ;|B|=N, \text { and } \operatorname{det} \boldsymbol{\Phi}_{: B} \neq 0\right\},
$$

has the following geometrical representation.

■ | B_{12} |
| :--- |
| B_{13} |
| B_{14} |
| B_{23} |
| B_{24} |
| B_{34} |

Continuous embedding of the support

The support of finite projection DPPs, characterized by

$$
\mathcal{B} \triangleq\left\{B ;|B|=N, \text { and } \operatorname{det} \boldsymbol{\Phi}_{: B} \neq 0\right\},
$$

has the following geometrical representation.

Continuous embedding of the support

The support of finite projection DPPs, characterized by

$$
\mathcal{B} \triangleq\left\{B ;|B|=N, \text { and } \operatorname{det} \boldsymbol{\Phi}_{: B} \neq 0\right\},
$$

has the following geometrical representation.

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

Example ($M=4, N=2$)

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

- Let $x \in \mathcal{Z}(\boldsymbol{\Phi})$.

Example ($M=4, N=2$)

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

- Let $x \in \mathcal{Z}(\boldsymbol{\Phi})$.
- Solve the linear program (LP)

$$
\begin{array}{ll}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x \\
0 \leq y \leq 1
\end{array}
$$

Example ($M=4, N=2$)

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

- Let $x \in \mathcal{Z}(\boldsymbol{\Phi})$.
- Solve the linear program (LP)

$$
\begin{array}{ll}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi y} y=x \\
& 0 \leq y \leq 1
\end{array}
$$

- Consider the optimal solution y^{*} and keep only

$$
B_{x}=\left\{i ; 0<y_{i}^{*}<1\right\} \in \mathcal{B} .
$$

Example ($M=4, N=2$)

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{N \times M}$ such that $\operatorname{rank} \boldsymbol{\Phi}=N$

$$
\mathcal{Z}(\boldsymbol{\Phi}) \triangleq \boldsymbol{\Phi}[0,1]^{M} .
$$

- Let $x \in \mathcal{Z}(\boldsymbol{\Phi})$.
- Solve the linear program (LP)

$$
\begin{array}{ll}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x \\
0 \leq y \leq 1
\end{array}
$$

- Consider the optimal solution y^{*} and keep only

$$
B_{x}=\left\{i ; 0<y_{i}^{*}<1\right\} \in \mathcal{B} .
$$

Example ($M=4, N=2$)

Random walk on zonotope $\xrightarrow{(L P)}$ random walk on tiles
Gautier, Bardenet, and Valko (2017)

Random walk on zonotope $\xlongequal{(L P)}$ random walk on tiles
Gautier, Bardenet, and Valko (2017)

- Hit-and-run on $\mathcal{Z}(\boldsymbol{\Phi})$

(Lovász and Vempala, 2003; Chen et al., 2018)

Random walk on zonotope $\xlongequal{(L P)}$ random walk on tiles

Gautier, Bardenet, and Valko (2017)

- Hit-and-run on $\mathcal{Z}(\boldsymbol{\Phi})$

(Lovász and Vempala, 2003; Chen et al., 2018)
- Random walk on \mathcal{B}
- Solve

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x_{t} \\
& 0 \leq y \leq 1
\end{array}
$$

- $B_{x_{t}}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$
- Markov Chain $\left(B_{x_{t}}\right)_{t \in \mathbb{N}}$

Random walk on zonotope $\xlongequal{(L P)}$ random walk on tiles

Gautier, Bardenet, and Valko (2017)

- Hit-and-run on $\mathcal{Z}(\boldsymbol{\Phi})$

(Lovász and Vempala, 2003; Chen et al., 2018)
- Target density on $\mathcal{Z}(\boldsymbol{\Phi})$

$$
\pi(x)=\sum_{B \in \mathcal{B}} C_{B} \times \mathbb{1}_{\mathcal{Z}\left(\boldsymbol{\Phi}_{: B}\right)}(x) .
$$

- Random walk on \mathcal{B}
- Solve

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x_{t} \\
& 0 \leq y \leq 1
\end{array}
$$

- $B_{x_{t}}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$
- Markov Chain $\left(B_{x_{t}}\right)_{t \in \mathbb{N}}$

Random walk on zonotope $\xlongequal{(L P)}$ random walk on tiles

Gautier, Bardenet, and Valko (2017)

- Hit-and-run on $\mathcal{Z}(\boldsymbol{\Phi})$

(Lovász and Vempala, 2003; Chen et al., 2018)
- Target density on $\mathcal{Z}(\boldsymbol{\Phi})$

$$
\pi(x)=\sum_{B \in \mathcal{B}} C_{B} \times \mathbb{1}_{\mathcal{Z}\left(\boldsymbol{\Phi}_{: B}\right)}(x) .
$$

- Random walk on \mathcal{B}
- Solve

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x_{t} \\
& 0 \leq y \leq 1
\end{array}
$$

- $B_{x_{t}}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$
- Markov Chain $\left(B_{x_{t}}\right)_{t \in \mathbb{N}}$
- Limiting distribution on \mathcal{B}

$$
\mathbb{P}\left[B_{x}=B\right]=C_{B} \times\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right|
$$

Random walk on zonotope $\xlongequal{(L P)}$ random walk on tiles

Gautier, Bardenet, and Valko (2017)

- Hit-and-run on $\mathcal{Z}(\boldsymbol{\Phi})$

(Lovász and Vempala, 2003; Chen et al., 2018)
- Target density on $\mathcal{Z}(\boldsymbol{\Phi})$

$$
\pi(x)=\sum_{B \in \mathcal{B}} C_{B} \times \mathbb{1}_{\mathcal{Z}\left(\boldsymbol{\Phi}_{: B}\right)}(x) .
$$

- Random walk on \mathcal{B}
- Solve

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{M}} & c^{\top} y \\
\text { s.t. } & \boldsymbol{\Phi} y=x_{t} \\
& 0 \leq y \leq 1
\end{array}
$$

- $B_{x_{t}}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$
- Markov Chain $\left(B_{x_{t}}\right)_{t \in \mathbb{N}}$
- Limiting distribution on \mathcal{B}

$$
\mathbb{P}\left[B_{x}=B\right]=C_{B} \times\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right|
$$

How to make $\mathbb{P}\left[B_{x}=B\right] \propto\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}$?

Hit-and-run with acceptance ratio $=1$

The target density on $\mathcal{Z}(\boldsymbol{\Phi})$ is uniform,

$$
\pi(x) \propto \sum_{B \in \mathcal{B}} 1 \times \mathbb{1}_{\mathcal{Z}\left(\boldsymbol{\Phi}_{: B}\right)}(x) .
$$

The limiting distribution on \mathcal{B} takes the form

$$
\mathbb{P}\left[B_{\times}=B\right] \propto 1 \times\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right|=\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right|^{1} .
$$

Hit-and-run with acceptance ratio $=\left|\frac{\operatorname{det} \Phi_{: \tilde{B}}}{\operatorname{det} \Phi_{: B}}\right|$

The target density on $\mathcal{Z}(\boldsymbol{\Phi})$ is given by

$$
\pi(x) \propto \sum_{B \in \mathcal{B}}\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right| \times \mathbb{1}_{\mathcal{Z}\left(\boldsymbol{\Phi}_{: \mathbf{B}}\right)}(x)
$$

The limiting distribution on \mathcal{B} takes the form

$$
\mathbb{P}\left[B_{x}=B\right] \propto\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right| \times\left|\operatorname{det} \boldsymbol{\Phi}_{: B}\right|=\left(\operatorname{det} \boldsymbol{\Phi}_{: B}\right)^{2}
$$

Illustration of the zonotope walk ($M=24, N=7$)

$$
B_{0}=\{1,3,9,12,13,18,24\}
$$

```
But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!
```


Illustration of the zonotope walk ($M=24, N=7$)

$$
\begin{aligned}
B_{0}=\{1,3,9,12,13,18,24\} \quad B_{1}= & \left(B_{0} \backslash\{1,9,13,18\}\right) \\
& \cup\{6,8,14,17\}
\end{aligned}
$$

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

Illustration of the zonotope walk ($M=24, N=7$)

$$
\begin{array}{rlrl}
B_{0}=\{1,3,9,12,13,18,24\} & B_{1}= & \left(B_{0} \backslash\{1,9,13,18\}\right) & B_{2}= \\
& \cup\left\{B_{1} \backslash\{3,8,12,17\}\right) \\
& \cup\{7,10,15,23\}
\end{array}
$$

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And I hold within my hand
Of a surf-tormented shore,
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,
Take this kiss upon the brow!

But a dream within a dream?
Is all that we see or seem
One from the pitiless wave?
O God! can I not save
Them with a tighter clasp?
O God! can I not grasp
While I weep--while I weep!
Through my fingers to the deep,
How few! yet how they creep
Grains of the golden sand-
And hord within my hand
I stand amid the roar
Is but a dream within a dream.
All that we see or seem
Is it therefore the less gone?
In a vision, or in none,
In a night, or in a day,
Yet if hope has flown away
That my days have been a dream;
You are not wrong, who deem
Thus much let me avow-
And, in parting from you now,

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

PSRF / iteration

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

	basis-exchange		zonotope	
Exploration of the support	\checkmark	(lazy)	$\checkmark \checkmark \checkmark$	
Empirical mixing	$\checkmark \checkmark$		$\checkmark \checkmark \checkmark$	
Cost per iteration	$\checkmark \checkmark \checkmark$	det	\checkmark	$\operatorname{det}+3$ LPs
Theoretical guarantees	$\checkmark \checkmark$	$\operatorname{poly}(M, N)$	$\boldsymbol{?}$	$\operatorname{poly}(M, N)$?

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

	basis-exchange		zonotope	
Exploration of the support	\checkmark	(lazy)	$\checkmark \checkmark \checkmark$	
Empirical mixing	$\checkmark \checkmark$		$\checkmark \checkmark \checkmark$	
Cost per iteration	$\checkmark \checkmark \checkmark$	det	\checkmark	det + 3 LPs
Theoretical guarantees	$\checkmark \checkmark$	$\operatorname{poly}(M, N)$	$\boldsymbol{?}$	$\operatorname{poly}(M, N)$?

The zonotope walk is sample efficient.

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of $\mathbb{P}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathcal{X}\right]=\operatorname{det} \mathbf{K}_{\left\{x_{1}, x_{2}, x_{3}\right\}}$.

	basis-exchange		zonotope	
Exploration of the support	\checkmark	(lazy)	$\checkmark \checkmark \checkmark$	
Empirical mixing	$\checkmark \checkmark$		$\checkmark \checkmark \checkmark$	
Cost per iteration	$\checkmark \checkmark \checkmark$	det	\checkmark	$\operatorname{det}+3$ LPs
Theoretical guarantees	$\checkmark \checkmark$	$\operatorname{poly}(M, N)$	$\boldsymbol{?}$	$\operatorname{poly}(M, N)$?

The zonotope walk is sample efficient.
Can we generalize the idea to the continuous setting?

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs
Contributions
Zonotope sampling for finite projection DPPs

Transition

Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives

Sampling by solving randomized linear programs?

Finite case

Linear Programming (LP)

$$
\begin{array}{ll}
\min _{y} & c^{\top} y \\
\text { s.t. } & \varphi_{1}^{\top} y \\
& =x_{1} \\
& \vdots \\
& \varphi_{N}{ }^{\top} y \\
& =x_{N} \\
& 0 \leq y \leq 1
\end{array}
$$

- Unique solution y^{*} ©
- Efficient solvers
- "Support" of the solution
- $\left|i ; 0<y_{i}^{*}<1\right|=N \oplus$

Sampling by solving randomized linear programs?

Finite case
Linear Programming (LP)

$$
\begin{array}{ll}
\min _{y} & c^{\top} y \\
\text { s.t. } & \varphi_{1}^{\top} y=x_{1} \\
& \\
& \vdots \\
& \varphi_{N}^{\top} y=x_{N} \\
& 0 \leq y \leq 1
\end{array}
$$

- Unique solution y^{*} -
- Efficient solvers
- "Support" of the solution
- $\left|i ; 0<y_{i}^{*}<1\right|=N$ ©

Continuous case (dimension d)
Linear Semi Infinite Programming (LSIP)

$$
\begin{array}{ll}
\min _{\nu} & \int c(x) \nu(\mathrm{d} x) \\
\text { s.t. } & \int \varphi_{1}(x) \nu(\mathrm{d} x)=m_{1} \\
& \vdots \\
& \int \varphi_{N}(x) \nu(\mathrm{d} x)=m_{N} \\
& " 0 \leq \mu \leq 1 "
\end{array}
$$

- No unique solution $)^{2}$
- No efficient solvers $)^{-}$
- Structure of the support of solutions - $\exists \nu^{*}$ s.t. $\left|\operatorname{supp} \nu^{*}\right| \leq N$.
(Goberna and López, 2014)

Sampling by solving randomized linear programs?

Dimension $d>1$

For polynomials functions c and φ_{n}
$\min _{\nu} \int c(x) \nu(\mathrm{d} x)$
s.t. $\int \varphi_{1}(x) \nu(\mathrm{d} x)=m_{1}$

$$
\int \varphi_{N}(x) \nu(\mathrm{d} x)=m_{N}
$$

- No unique solution
- Efficient solvers? (Lasserre, 2010)
- hierarchy of SDP relaxations
- works for small d and N ©
- Structure of the support of solutions
- $\exists \nu^{*}$ s.t. $\left|\operatorname{supp} \nu^{*}\right| \leq N$
- unstable support extraction ${ }^{*}$

Sampling by solving randomized linear programs?

Dimension $d>1$
For polynomials functions c and φ_{n}

$$
\begin{array}{llll}
\min _{\nu} & \int c(x) \nu(\mathrm{d} x) & \\
\text { s.t. } & \int \varphi_{1}(x) \nu(\mathrm{d} x) & =m_{1} \\
& & \vdots \\
& \int \varphi_{N}(x) \nu(\mathrm{d} x) & =m_{N}
\end{array}
$$

- No unique solution ©
- Efficient solvers? (Lasserre, 2010)
- hierarchy of SDP relaxations
- works for small d and N ©

Dimension $d=1$
Truncated moment problem

$$
\begin{array}{llc}
\min _{\nu} & \mathbb{E}_{\nu}\left[X^{2 N}\right] & \\
\text { s.t. } & \mathbb{E}_{\nu}[X]=m_{1} \\
& & \vdots \\
& \mathbb{E}_{\nu}\left[X^{2 N-1}\right] & =m_{2 N-1}
\end{array}
$$

- Unique solution $\nu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$
- Unstable support extraction $)^{-}$
- Structure of the support of solutions
- $\exists \nu^{*}$ s.t. $\left|\operatorname{supp} \nu^{*}\right| \leq N$
- unstable support extraction ()

Sampling by solving randomized linear programs?

Finite case

Linear Programming (LP)

$$
\begin{array}{cl}
\min _{y} & c^{\top} y \\
\text { s.t. } & \varphi_{1}^{\top} y \\
& =x_{1} \\
& \vdots \\
& \varphi_{N}{ }^{\top} y \\
& =x_{N} \\
& 0 \leq y \leq 1
\end{array}
$$

- Unique solution y^{*} ©
- Efficient solvers ${ }^{-}$
- "Support" of the solution
- $\left|i ; 0<y_{i}^{*}<1\right|=N$

Dimension $d=1$
Truncated moment problem
$\min _{\nu} \mathbb{E}_{\nu}\left[X^{2 N}\right]$
s.t. $\mathbb{E}_{\nu}[X]$
$=m_{1}$
$\mathbb{E}_{\nu}\left[X^{2 N-1}\right]=m_{2 N-1}$

- Unique solution $\nu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$ ©
- Unstable support extraction ${ }^{*}$

How to randomize the moment constraints s.t. $\left\{x_{1}, \ldots, x_{N}\right\} \sim$ target DPP?

Sampling by solving randomized linear programs?

Finite case

Linear Programming (LP)

$$
\begin{array}{ll}
\min _{y} & c^{\top} y \\
\text { s.t. } & \varphi_{1}^{\top} y=x_{1} \\
& \\
& \vdots \\
& \varphi_{N^{\top} y}=x_{N} \\
& 0 \leq y \leq 1
\end{array}
$$

- Unique solution y^{*} (;)
- Efficient solvers ${ }^{-3}$
- "Support" of the solution
- $\left|i ; 0<y_{i}^{*}<1\right|=N$

Dimension $d=1$
Truncated moment problem
$\min _{\nu} \mathbb{E}_{\nu}\left[X^{2 N}\right]$
s.t. $\mathbb{E}_{\nu}[X]=m_{1}$

$$
\mathbb{E}_{\nu}\left[X^{2 N-1}\right]=m_{2 N-1}
$$

- Unique solution $\nu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$ (3)
- Unstable support extraction $)^{2}$
$\left(\omega_{n}\right),\left(x_{n}\right)$ define a quadrature rule
(RyBo15; Dette and Studden, 1997)

How to randomize the moment constraints s.t. $\left\{x_{1}, \ldots, x_{N}\right\}$ target DPP?

Sampling by computing the eigenvalues of random tridiagonal matrices

Dimension $d=1$
Truncated moment problem

$$
\begin{array}{llc}
\min _{\nu} & \mathbb{E}_{\nu}\left[X^{2 N}\right] & \\
\text { s.t. } & \mathbb{E}_{\nu}[X]=m_{1} \\
& & \vdots \\
& \mathbb{E}_{\nu}\left[X^{2 N-1}\right]=m_{2 N-1}
\end{array}
$$

- Unique solution $\nu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$
- $\left(\omega_{n}\right),\left(x_{n}\right)$ define a quadrature rule

$$
\int p \mathrm{~d} \mu=\sum \omega_{n} p\left(x_{n}\right), \operatorname{deg} p \leq 2 N-1 .
$$

Sampling by computing the eigenvalues of random tridiagonal matrices

Dimension $d=1$
Truncated moment problem
$\min _{\nu} \mathbb{E}_{\nu}\left[X^{2 N}\right]$
s.t. $\mathbb{E}_{\nu}[X]$
$=m_{1}$
$\mathbb{E}_{\nu}\left[X^{2 N-1}\right]=m_{2 N-1}$

- Unique solution $\nu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$
- $\left(\omega_{n}\right),\left(x_{n}\right)$ define a quadrature rule

$$
\int p \mathrm{~d} \mu=\sum \omega_{n} p\left(x_{n}\right), \operatorname{deg} p \leq 2 N-1 .
$$

Reparametrize ν^{*} via the 3-terms recurrence relation \perp polynomials encoded by

$$
J_{\mathbf{a}, \mathbf{b}} \triangleq\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

- $\left\{x_{1}, \ldots, x_{N}\right\}=$ eigvals $J_{\mathbf{a}, \mathbf{b}}$
- Computational cost $\mathcal{O}\left(N^{2}\right)$

Sampling by computing the eigenvalues of random tridiagonal matrices

Dimension $d=1$
Truncated moment problem
$\min _{\nu} \mathbb{E}_{\nu}\left[X^{2 N}\right]$
s.t. $\mathbb{E}_{\nu}[X]$
$=m_{1}$
$\mathbb{E}_{\nu}\left[X^{2 N-1}\right]=m_{2 N-1}$

Reparametrize ν^{*} via the 3-terms recurrence relation \perp polynomials encoded by

$$
J_{\mathbf{a}, \mathbf{b}} \triangleq\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

- $\left\{x_{1}, \ldots, x_{N}\right\}=$ eigvals $J_{\mathbf{a}, \mathbf{b}}$
- Computational cost $\mathcal{O}\left(N^{2}\right)$
- $\left(\omega_{n}\right),\left(x_{n}\right)$ define a quadrature rule $\int p \mathrm{~d} \mu=\sum \omega_{n} p\left(x_{n}\right), \operatorname{deg} p \leq 2 N-1$.

Sampling 1D continuous projection DPPs may be cheaper than sampling finite projection DPPs?!

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPs
Transition
Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives

Convert a random matrix analysis tool to a computational tool

Definition (β-ensemble)

Let $\left(x_{1}, \ldots, x_{N}\right)$ with distribution proportional to

$$
\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)} \mathrm{d} x_{n}
$$

then $\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}$ is called a β-ensemble with potential V.

- Repulsion characterized by $\prod_{i<j}\left(x_{j}-x_{i}\right)=\operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{N}$
- Strength of the repulsion parametrized by $\beta>0$ (inverse temperature).

Definition (β-ensemble)

Let $\left(x_{1}, \ldots, x_{N}\right)$ with distribution proportional to

$$
\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-v\left(x_{n}\right)} \mathrm{d} x_{n}
$$

then $\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}$ is called a β-ensemble with potential V.

- Repulsion characterized by $\prod_{i<j}\left(x_{j}-x_{i}\right)=\operatorname{det}\left[x_{j}^{i-1}\right]_{i, j=1}^{N}$
- Strength of the repulsion parametrized by $\beta>0$ (inverse temperature).

Example ($\beta=2$, corresponds to a projection DPP)

- $\mu(\mathrm{d} x)=e^{-V(x)} \mathrm{d} x$.
- $K(x, y)=\sum_{k=0}^{N-1} p_{k}(x) p_{k}(y), \quad p_{k}, p_{\ell} \perp$ polynomials w.r.t. μ.

Classical β-ensembles and random matrix models

Name	Potential $V(x)$	Support
Hermite	$\frac{1}{2 \sigma^{2}}(x-\mu)^{2}$	\mathbb{R}
Laguerre	$-(k-1) \log (x)+\frac{1}{\theta} x$	$] 0, \infty[$
Jacobi	$-(a-1) \log (x)-(b-1) \log (1-x)$	$] 0,1[$

Classical β-ensembles and random matrix models

Name	Potential $V(x)$	Support
Hermite	$\frac{1}{2 \sigma^{2}}(x-\mu)^{2}$	\mathbb{R}
Laguerre	$-(k-1) \log (x)+\frac{1}{\theta} x$	$] 0, \infty[$
Jacobi	$-(a-1) \log (x)-(b-1) \log (1-x)$	$] 0,1[$

$\beta(=1,2,4)$-ensembles as the eigenvalue distribution of random matrices.

Classical β-ensembles and random matrix models

Name	Potential $V(x)$	Support
Hermite	$\frac{1}{2 \sigma^{2}}(x-\mu)^{2}$	\mathbb{R}
Laguerre	$-(k-1) \log (x)+\frac{1}{\theta} x$	$] 0, \infty[$
Jacobi	$-(a-1) \log (x)-(b-1) \log (1-x)$	$] 0,1[$

$\beta(=1,2,4)$-ensembles as the eigenvalue distribution of random matrices.
Example ($\beta=2$ and $X \sim$ standard complex Gaussian matrix)

- $X \in \mathbb{C}^{N \times N}$
- $X \in \mathbb{C}^{N \times M}$
- eigvals $\left(X+X^{\mathrm{H}}\right) \sim$ Hermite

- eigvals $\left(X X^{H}\right) \sim$ Laguerre

Classical β-ensembles and random matrix models

Name	Potential $V(x)$	Support
Hermite	$\frac{1}{2 \sigma^{2}}(x-\mu)^{2}$	\mathbb{R}
Laguerre	$-(k-1) \log (x)+\frac{1}{\theta} x$	$] 0, \infty[$
Jacobi	$-(a-1) \log (x)-(b-1) \log (1-x)$	$] 0,1[$

$\beta(=1,2,4)$-ensembles as the eigenvalue distribution of random matrices.
Example ($\beta=2$ and $X \sim$ standard complex Gaussian matrix)

- $X \in \mathbb{C}^{N \times N}$
- $X \in \mathbb{C}^{N \times M}$
- eigvals $\left(X+X^{\mathrm{H}}\right) \sim$ Hermite

- eigvals $\left(X X^{H}\right) \sim$ Laguerre

Random matrix models grant $\mathcal{O}\left(N^{3}\right)$ exact samplers!

Classical β-ensembles and random tridiagonal models

Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent random tridiagonal models, valid for $\beta>0$,

$$
\text { eigvals }\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

Classical β-ensembles and random tridiagonal models

Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent random tridiagonal models, valid for $\beta>0$,

$$
\text { eigvals }\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

Example (Hermite ensemble, $\left.\beta>0, V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
Consider independent $a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and $b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

Classical β-ensembles and random tridiagonal models

Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent random tridiagonal models, valid for $\beta>0$,

$$
\text { eigvals }\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

Example (Hermite ensemble, $\left.\beta>0, V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
Consider independent $a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and $b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

Random tridiagonal models grant $\mathcal{O}\left(N^{2}\right)$ exact samplers!

Classical β-ensembles and random tridiagonal models

Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent random tridiagonal models, valid for $\beta>0$,

$$
\text { eigvals }\left[\begin{array}{cccc}
a_{1} & \sqrt{b_{1}} & & (0) \\
\sqrt{b_{1}} & a_{2} & \ddots & \\
& \ddots & \ddots & \sqrt{b_{N-1}} \\
(0) & & \sqrt{b_{N-1}} & a_{N}
\end{array}\right]
$$

Example (Hermite ensemble, $\left.\beta>0, V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
Consider independent $a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and $b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

Random tridiagonal models grant $\mathcal{O}\left(N^{2}\right)$ exact samplers!
Extend tridiagonal models to more general β-ensembles ?

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)

Consider the random tridiagonal matrix $J_{\mathbf{a}, \mathbf{b}}$ where the entries have joint density

$$
\propto e^{-\operatorname{Tr} V\left(J_{\mathbf{a}, \mathbf{b}}\right)} \prod_{n=1}^{N-1} b_{n}^{\frac{\beta}{2}(N-n)-1}
$$

Then, the eigenvalues of $J_{\mathbf{a}, \mathbf{b}}$ have joint density

$$
\propto\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)}
$$

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)

Consider the random tridiagonal matrix $J_{\mathbf{a}, \mathbf{b}}$ where the entries have joint density

$$
\propto e^{-\operatorname{Tr} V\left(J_{\mathrm{a}, \mathrm{~b}}\right)} \prod_{n=1}^{N-1} b_{n}^{\frac{\beta}{2}(N-n)-1}
$$

Then, the eigenvalues of $J_{\mathbf{a}, \mathbf{b}}$ have joint density

$$
\propto\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)} .
$$

Gautier, Bardenet, and Valko (2020 - arXiv)

- Provide simple and clean proof.

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)

Consider the random tridiagonal matrix $J_{\mathbf{a}, \mathbf{b}}$ where the entries have joint density

$$
\propto e^{-\operatorname{Tr} V\left(J_{\mathrm{a}, \mathrm{~b}}\right)} \prod_{n=1}^{N-1} b_{n}^{\frac{\beta}{2}(N-n)-1}
$$

Then, the eigenvalues of $J_{\mathbf{a}, \mathbf{b}}$ have joint density

$$
\propto\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)} \prod_{n=1}^{N} \omega_{n}^{\frac{\beta}{2}-1} .
$$

Gautier, Bardenet, and Valko (2020 - arXiv)

- Provide simple and clean proof, starting from $\mu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$.

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)

Consider the random tridiagonal matrix $J_{\mathbf{a}, \mathbf{b}}$ where the entries have joint density

$$
\propto e^{-\operatorname{Tr} V\left(J_{\mathrm{a}, \mathrm{~b}}\right)} \prod_{n=1}^{N-1} b_{n}^{\frac{\beta}{2}(N-n)-1}
$$

Then, the eigenvalues of $J_{\mathbf{a}, \mathbf{b}}$ have joint density

$$
\propto\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)} \prod_{n=1}^{N} \omega_{n}^{\frac{\beta}{2}-1} .
$$

Gautier, Bardenet, and Valko (2020 - arXiv)

- Provide simple and clean proof, starting from $\mu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$.
- Extend Krishnapur's result to unify the treatment of classical β-ensembles.

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)

Consider the random tridiagonal matrix $J_{\mathbf{a}, \mathbf{b}}$ where the entries have joint density

$$
\propto e^{-\operatorname{Tr} V\left(J_{\mathrm{a}, \mathrm{~b}}\right)} \prod_{n=1}^{N-1} b_{n}^{\frac{\beta}{2}(N-n)-1}
$$

Then, the eigenvalues of $J_{\mathbf{a}, \mathbf{b}}$ have joint density

$$
\alpha\left|\prod_{i<j}\left(x_{j}-x_{i}\right)\right|^{\beta} \prod_{n=1}^{N} e^{-V\left(x_{n}\right)} \prod_{n=1}^{N} \omega_{n}^{\frac{\beta}{2}-1} .
$$

Gautier, Bardenet, and Valko (2020 - arXiv)

- Provide simple and clean proof, starting from $\mu^{*}=\sum_{n=1}^{N} \omega_{n} \delta_{x_{n}}$.
- Extend Krishnapur's result to unify the treatment of classical β-ensembles.
- Perform empirical study of tridiagonal models for polynomial potential V.

Tridiagonal models for polynomial potentials V

When degree $V=2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are independent (\cdot)
- have easy-to-sample distribution

Example $\left(V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
$a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \quad b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

Tridiagonal models for polynomial potentials V

When degree $V=2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are independent (\cdot)
- have easy-to-sample distribution

When degree $V>2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are not independent $(\underset{)}{ }$
- but have short range interaction ©

$$
\begin{aligned}
& \text { Example }\left(V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \\
& a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right) .
\end{aligned}
$$

Tridiagonal models for polynomial potentials V

When degree $V=2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are independent ©
- have easy-to-sample distribution $)^{-}$

Example $\left(V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
$a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

When degree $V>2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are not independent \cdot
- but have short range interaction ©

Example $\left(V(x)=g_{4} x^{4}+g_{2} x^{2}\right)$
$a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b}$

$$
\sim \exp \left[-\left(g_{4} a_{n}^{4}+a_{n}^{2}\left[g_{2}+4 g_{4}\left(b_{n-1}+b_{n}\right)\right]+4 g_{4} a_{n}\left(a_{n-1} b_{n-1}+a_{n+1} b_{n}\right)\right)\right]
$$

$b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n}$

$$
\sim b_{n}^{\frac{\beta}{2}(N-n)-1} \exp \left[-2\left(g_{4} b_{n}^{2}+b_{n}\left[g_{2}+2 g_{4}\left(a_{n}^{2}+a_{n} a_{n+1}+a_{n+1}^{2}+b_{n-1}+b_{n+1}\right)\right]\right)\right] .
$$

Tridiagonal models for polynomial potentials V

When degree $V=2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are independent (\cdot)
- have easy-to-sample distribution ©

Example $\left(V(x)=\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$
$a_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), b_{n} \sim \Gamma\left(\frac{\beta}{2}(N-n), \sigma^{2}\right)$.

When degree $V>2$,

- $\left(a_{n}\right),\left(b_{n}\right)$ are not independent ${ }^{*}$
- but have short range interaction ©

Example $\left(V(x)=g_{4} x^{4}+g_{2} x^{2}\right)$
$a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b}$
$\sim \exp \left[-\left(g_{4} a_{n}^{4}+a_{n}^{2}\left[g_{2}+4 g_{4}\left(b_{n-1}+b_{n}\right)\right]+4 g_{4} a_{n}\left(a_{n-1} b_{n-1}+a_{n+1} b_{n}\right)\right)\right]$,
$b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n}$

$$
\sim b_{n}^{\frac{\beta}{2}(N-n)-1} \exp \left[-2\left(g_{4} b_{n}^{2}+b_{n}\left[g_{2}+2 g_{4}\left(a_{n}^{2}+a_{n} a_{n+1}+a_{n+1}^{2}+b_{n-1}+b_{n+1}\right)\right]\right)\right] .
$$

This suggests a Gibbs sampling strategy!

Combining tridiagonal models with Gibbs sampling

Target: β-ensembles with potentials of the form

$$
V(x)=g_{6} x^{6}+g_{5} x^{5}+g_{4} x^{4}+g_{3} x^{3}+g_{2} x^{2}+g_{1} x .
$$

Combining tridiagonal models with Gibbs sampling

Target: β-ensembles with potentials of the form

$$
V(x)=g_{6} x^{6}+g_{5} x^{5}+g_{4} x^{4}+g_{3} x^{3}+g_{2} x^{2}+g_{1} x .
$$

- Systematic scan Gibbs sampler

$$
\begin{aligned}
& \text { for } t=1 \text { to } T \\
& \text { for } n=1 \text { to } N
\end{aligned}
$$

sample $a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b}$
sample $b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n}$ if $n<N$
$\left\{x_{1}^{t}, \ldots, x_{N}^{t}\right\}=$ eigvals $J_{\mathbf{a}, \mathbf{b}}$

Combining tridiagonal models with Gibbs sampling

Target: β-ensembles with potentials of the form

$$
V(x)=g_{6} x^{6}+g_{5} x^{5}+g_{4} x^{4}+g_{3} x^{3}+g_{2} x^{2}+g_{1} x .
$$

- Systematic scan Gibbs sampler

$$
\begin{aligned}
& \text { for } t=1 \text { to } T \\
& \text { for } n=1 \text { to } N \\
& \quad \text { sample } a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b} \\
& \text { sample } b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n} \text { if } n<N \\
& \left\{x_{1}^{t}, \ldots, x_{N}^{t}\right\}=\text { eigvals } J_{\mathbf{a}, \mathbf{b}}
\end{aligned}
$$

- Exact sampling of log-concave conditionals (Devroye, 2012).
- e.g., $V(x)=\frac{1}{4} x^{4}$.

Combining tridiagonal models with Gibbs sampling

Target: β-ensembles with potentials of the form

$$
V(x)=g_{6} x^{6}+g_{5} x^{5}+g_{4} x^{4}+g_{3} x^{3}+g_{2} x^{2}+g_{1} x .
$$

- Systematic scan Gibbs sampler

$$
\begin{aligned}
& \text { for } t=1 \text { to } T \\
& \text { for } n=1 \text { to } N \\
& \text { sample } a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b} \\
& \text { sample } b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n} \text { if } n<N \\
& \left\{x_{1}^{t}, \ldots, x_{N}^{t}\right\}=\text { eigvals } J_{\mathbf{a}, \mathbf{b}}
\end{aligned}
$$

- Exact sampling of log-concave conditionals (Devroye, 2012).
- e.g., $V(x)=\frac{1}{4} x^{4}$.
- Metropolis-Hastings kernel (MALA) for non log-concave conditionals.
- e.g., $V(x)=\frac{1}{6} x^{6}$.

Combining tridiagonal models with Gibbs sampling

Target: β-ensembles with potentials of the form

$$
V(x)=g_{6} x^{6}+g_{5} x^{5}+g_{4} x^{4}+g_{3} x^{3}+g_{2} x^{2}+g_{1} x .
$$

- Systematic scan Gibbs sampler

$$
\begin{aligned}
& \text { for } t=1 \text { to } T \\
& \text { for } n=1 \text { to } N \\
& \text { sample } a_{n} \mid \mathbf{a}_{\backslash n}, \mathbf{b} \\
& \text { sample } b_{n} \mid \mathbf{a}, \mathbf{b}_{\backslash n} \text { if } n<N \\
& \left\{x_{1}^{t}, \ldots, x_{N}^{t}\right\}=\text { eigvals } J_{\mathbf{a}, \mathbf{b}}
\end{aligned}
$$

- Exact sampling of log-concave conditionals (Devroye, 2012).
- e.g., $V(x)=\frac{1}{4} x^{4}$.
- Metropolis-Hastings kernel (MALA) for non log-concave conditionals.
- e.g., $V(x)=\frac{1}{6} x^{6}$.

> How does it perform?

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{\chi_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}} .
$$

- $V(x)=\frac{1}{4} x^{4}$, exact sampling of the conditionals.

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{\chi_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}} .
$$

- $V(x)=\frac{1}{4} x^{4}$, exact sampling of the conditionals.

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{\chi_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}} .
$$

- $V(x)=\frac{1}{4} x^{4}$, exact sampling of the conditionals.

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{\chi_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}}
$$

- $V(x)=\frac{1}{4} x^{4}$, exact sampling of the conditionals.

- Good adequation with the theory.
- Empirical convergence within $t \leq 10$ Gibbs passes, only!

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{\chi_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}} .
$$

- $V(x)=\frac{1}{6} x^{6}$, approximate sampling of the conditionals.

- Good adequation with the theory.
- Empirical convergence within $t \leq 10$ Gibbs passes, only!

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

$$
\widehat{\mu}_{N}^{t}=\frac{1}{N} \sum_{n=1}^{N} \delta_{x_{n}^{t}} \xrightarrow[N, t \rightarrow \infty]{ } \mu_{\mathrm{eq}} .
$$

- $V(x)=\frac{1}{6} x^{6}$, approximate sampling of the conditionals.

- Good adequation with the theory.
- Empirical convergence within $t \leq 10$ Gibbs passes, only!

Supports the $\mathcal{O}(\log (N))$ mixing time conjecture of Krishnapur et. al (2016).

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives

My Ph.D. in a nutshell

Finite setting

Continuous setting

Continuous setting

DPP sampling

Software engineering

Monte Carlo integration Exact sampling Random linear system

NeurIPS, 2019

Python toolbox DPPy ©
Reproducible research
from dppy import * \# [...]
dpp.sample ()
JMLR-MLOSS, 2019

Zonotope sampling for finite projection DPPs

- New perspective on finite projection DPPs.
- Combination of geometry, Markov chains and linear programming.
- Approximate sampler involving randomized linear programs.
- More efficient exploration of the state space.

ICML, 2017

Tridiagonal models for sampling β-ensembles

- Unified treatment of tridiagonal models for the classical β-ensembles.
- Combination of a Gibbs sampler with calculation of eigenvalues.
- Very fast empirical convergence supporting the $\mathcal{O}(\log (N))$ mixing time conjecture.

$$
\text { Submitted to an international journal, } 2020
$$

Monte Carlo integration with DPPs

Let $\left\{x_{1}, \ldots, x_{N}\right\} \sim \operatorname{DPP}(K, \mu)$, where $K(x, y)=\sum_{k=0}^{N-1} \phi_{k}(x) \phi_{k}(y)$.

$$
\int f(x) \mu(\mathrm{d} x) \approx \sum_{n=1}^{N} \omega_{n} f\left(x_{n}\right),
$$

- Shed light on the estimator of Ermakov and Zolotukhin (1960)
- involving a randomized linear system
- provide new simple proofs of its properties

$$
\mathbb{V a r}=\|f\|^{2}-\sum_{k=0}^{N-1}\left\langle f, \phi_{k}\right\rangle^{2}
$$

- Numerical comparison with the estimator of Bardenet and Hardy (2020)
- Tailored implementation of the chain rule.

Adapt the kernel K to the basis where f has a smooth/sparse expansion.
NeurIPS, 2019

DPPy: DPP sampling with Python

- guilgautier / DPPy

(17) Used by *	8	(-) Unwatch *	12	* Unstar	94	Fork	24

from dppy import * \# [...] dpp.sample()

- Open source toolbox $\boldsymbol{\mathcal { O }}$.
- Implementation of exact and approximate samplers.
- Extensive documentation \boldsymbol{E}.

JMLR-MLOSS, 2019

Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPS
Transition
Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives

Open questions

- Zonotope
- prove a bound on the mixing time.
- extend the LP idea for continuous DPPs.
- β-ensembles
- prove the $\mathcal{O}(\log (N))$ mixing time for the Gibbs sampler.
- extend tridiagonal models for multivariate β-ensembles.
- Efficient sampler for continuous projection DPPs $(d>1)$?
- Avoid kernel eigendecomposition for sampling non-projection DPPs?

Perspectives

- Find a good reparametrization of DPPs where
- complex interaction structure vanishes.
- efficient sampling can be performed.
- Continuous extension of sampling by solving linear programs.
- Sampling by coupling the target DPP with another process.
- Decreusefond, Flint, and Low (2013), Launay, Galerne, and Desolneux (2018), and Dereziński, Calandriello, and Valko (2019).
- Continue developing the DPPy toolbox ©

Thank you! Eux $\alpha \rho \iota \sigma \tau \omega!$ Merci!

References [1]

Anari, N., S. O. Gharan, and A. Rezaei. 2016. Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes. In Conference on Learning Theory (COLT). arXiv:1602.05242. (see slides 49, 50, 51, 52, 53).

Bardenet, R., and A. Hardy. 2020. Monte Carlo with Determinantal Point Processes. Annals of Applied Probability. arXiv:1605.00361. (see slides 4, 133, 148).

Chen, Y., R. Dwivedi, M. Wainwright, and Y. Bin. 2018. Fast MCMC Sampling Algorithms on Polytopes. Journal of Machine Learning Research. (see slides 70, 71, 72, 73, 74).

Decreusefond, L., I. Flint, and K. C. Low. 2013. Perfect Simulation of Determinantal Point Processes. ArXiv e-prints. arXiv:1311.1027. (see slide 137).

References [2]

Dereziński, M., D. Calandriello, and M. Valko. 2019. Exact sampling of determinantal point processes with sublinear time preprocessing. In Advances in Neural Information Processing Systems (NeurIPS), edited by
H. W. Garnett, H. Larochelle, A. Beygelzimer, F. D’Alché-Buc, E. Fox, and R. Garnett. Vancouver, Canada: Curran Associates, Inc. arXiv:1905.13476. (see slide 137).

Dette, H., and W. J. Studden. 1997. The theory of canonical moments with applications in statistics, probability, and analysis. Wiley. (see slide 93).

Devroye, L. 2012. A note on generating random variables with log-concave densities. Technical report. (see slides 119, 120, 121, 122).

Dumitriu, I., and A. Edelman. 2002. Matrix models for beta ensembles. Journal of Mathematical Physics. arXiv:math-ph/0206043. (see slides 105, 106, 107, 108).

References [3]

Dyer, M., and A. Frieze. 1994. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Mathematical Programming. (see slides $63,64,65,66,67,68)$.

Ermakov, S. M., and V. G. Zolotukhin. 1960. Polynomial Approximations and the Monte-Carlo Method. Theory of Probability and Its Applications. (see slides 133, 149, 150).

Feder, T., and M. Mihail. 1992. Balanced matroids. Proceedings of the twenty-fourth annual ACM. (see slides 49, 50, 51, 52, 53).

Gautier, G., R. Bardenet, and M. Valko. 2017. Zonotope hit-and-run for efficient sampling from projection DPPs. In International Conference on Machine Learning (ICML). arXiv:1705.10498. (see slides 5, 6, 7, 8, 9, 10, 58, 69, 70, 71, 72, 73, 74, 98, 130, 131).
2019. On two ways to use determinantal point processes for Monte Carlo integration. In Advances in Neural Information Processing Systems (NeurIPS). (see slides 5, 6, 7, 8, 9, 10, 58, 98, 130, 133).

References [4]

Gautier, G., R. Bardenet, and M. Valko. 2020. Fast sampling from β-ensembles. ArXiv e-prints. arXiv:2003.02344. (see slides 5, 6, 7, 8, 9, 10, 58, 98, 110, 111, 112, 113, 130, 132).

Gautier, G., G. Polito, R. Bardenet, and M. Valko. 2019. DPPy: DPP Sampling with Python. Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS). arXiv:1809.07258. (see slides 5, 6, 7, 8, 9, 10, 58, 98, 130, 134).

Gillenwater, J. 2014. Approximate inference for determinantal point processes. PhD dissertation, University of Pennsylvania. (see slides 30, 31, 32, 33, 34, 35, 36, 37).

Goberna, M. A., and M. A. López. 2014. Post-Optimal Analysis in Linear Semi-Infinite Optimization. Springer, New York, NY. (see slide 89).

Hermon, J., and J. Salez. 2019. Modified log-Sobolev inequalities for strong-Rayleigh measures. arXiv:1902.02775. (see slides 49, 50, 51, 52, 53).

References [5]

Hough, J. B., M. Krishnapur, Y. Peres, and B. Virág. 2006. Determinantal Processes and Independence. In Probability Surveys. arXiv:math/0503110. (see slides 30, 31, 32, 33, 34, 35, 36, 37).

Killip, R., and I. Nenciu. 2004. Matrix models for circular ensembles. International Mathematics Research Notices. arXiv:math/0410034. (see slides 105, 106, 107, 108, 152).

Krishnapur, M., B. Rider, and B. Virág. 2016. Universality of the Stochastic Airy Operator. Communications on Pure and Applied Mathematics. arXiv:arXiv:1306.4832. (see slides 109, 110, 111, 112, 113, 123, 124, 125, 126, 127, 128).

Lasserre, J.-B. 2010. Moments, positive polynomials and their applications. Imperial College Press. (see slides 90, 91).

Launay, C., B. Galerne, and A. Desolneux. 2018. Exact Sampling of Determinantal Point Processes without Eigendecomposition. ArXiv e-prints. arXiv:1802.08429. (see slide 137).

References [6]

Li, C., S. Jegelka, and S. Sra. 2016. Fast Mixing Markov Chains for Strongly Rayleigh Measures, DPPs, and Constrained Sampling. In Advances in Neural Information Processing Systems (NIPS). Barcelona, Spain. arXiv:1608.01008. (see slides 49, 50, 51, 52, 53).

Lovász, L., and S. Vempala. 2003. Hit-and-Run is Fast and Fun. Technical report. Microsoft Research. (see slides 70, 71, 72, 73, 74).

Luenberger, D. G., and Y. Ye. 2016. Linear and Nonlinear Programming.

L-ensembles and k-DPPs

Definition (L-ensemble)

Let $\mathbf{L} \succeq 0$. The point process defined by

$$
\mathbb{P}[\mathcal{X}=S]=\frac{\operatorname{det} \mathbf{L}_{S}}{\operatorname{det}(I+\mathbf{L})}
$$

is called an L-ensemble. It is a DPP with kernel $\mathbf{K}=\mathbf{L}(I+\mathbf{L})^{-1}$.

Definition (k-DPP)

Let $\mathbf{L} \succeq 0$ and $k \in \mathbb{N}^{*}$. The point process defined by

$$
\mathbb{P}[\mathcal{X}=S] \propto \operatorname{det} \mathbf{L}_{S} \mathbb{1}_{|S|=k} .
$$

is called a k-DPP.

Chain rule on sets

BH estimator and the multivariate Jacobi ensemble

Natural unbiased estimator of $\int_{\mathbb{X}} f(x) \mu(\mathrm{d} x)$

$$
\widehat{l}_{N}^{\mathrm{BH}}(f)=\sum_{n=1}^{N} \frac{f\left(x_{n}\right)}{K\left(x_{n}, x_{n}\right)}
$$

- Bardenet and Hardy (2020) show fast CLT, for f essentially \mathcal{C}^{1}

$$
\sqrt{N^{1+1 / d}}\left(\hat{I}_{N}^{\mathrm{BH}}(f)-\int_{[-1,1]^{d}} f(x) \omega(x) \mathrm{d} x\right) \xrightarrow[N \rightarrow \infty]{\operatorname{law}} \mathcal{N}\left(0, \Omega_{f, \omega}^{2}\right),
$$

with $\boldsymbol{\Omega}_{f, \omega}^{2} \triangleq \frac{1}{2} \sum_{k \in \mathbb{N}^{d}}\left(k_{1}+\cdots+k_{d}\right) \mathcal{F}\left[\frac{f \omega}{\omega_{\text {eq }}}\right](k)^{2}$

Theorem (Ermakov and Zolotukhin, 1960)

$$
f=\sum_{\ell=0}^{M-1}\left\langle f, \phi_{\ell}\right\rangle \phi_{\ell}, \quad M \in \mathbb{N} \cup\{\infty\}
$$

1. Sample $\left\{x_{1}, \ldots, x_{N}\right\} \sim \operatorname{DPP}(\mu, K)$ with $K(x, y)=\sum_{k=0}^{N-1} \phi_{k}(x) \phi_{k}(y)$
2. Random linear system

$$
\left[\begin{array}{ccc}
\phi_{0}\left(x_{1}\right) & \cdots & \phi_{N-1}\left(x_{1}\right) \\
\vdots & & \vdots \\
\phi_{0}\left(x_{N}\right) & \cdots & \phi_{N-1}\left(x_{N}\right)
\end{array}\right]\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{N-1}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]
$$

- $\mathbb{E}\left[y_{k}\right]=\left\langle f, \phi_{k}\right\rangle=\int f(x) \phi_{k}(x) \mu(\mathrm{d} x)$
- $\operatorname{Var}\left[y_{k}\right]=\|f\|^{2}-\sum_{\ell=0}^{N-1}\left\langle f, \phi_{\ell}\right\rangle^{2}=\sum_{\ell=N}^{M-1}\left\langle f, \phi_{\ell}\right\rangle^{2}=0 \quad$ if $M \leq N$
- $\operatorname{Cov}\left[y_{j}, y_{k}\right]=0, j \neq k$

Ermakov and Zolotukhin (1960) estimator

For constant ϕ_{0}, e.g., multivariate Jacobi ensemble,

$$
\mathbb{E}\left[y_{0}\right]=\phi_{0} \int_{\mathbb{X}} f(x) \mu(\mathrm{d} x)
$$

A direct application of EZ theorem yields

$$
\widehat{\boldsymbol{I}}_{N}^{\mathrm{EZ}}(f) \triangleq \frac{y_{0}}{\phi_{0}}=\sqrt{\mu\left([-1,1]^{d}\right)} \frac{\operatorname{det} \boldsymbol{\Phi}_{\phi_{0}, f}\left(x_{1: N}\right)}{\operatorname{det} \boldsymbol{\Phi}\left(x_{1: N}\right)}
$$

as an unbiased estimator of $\int f(x) \mu(\mathrm{d} x)$
Using $\left\|\phi_{0}\right\|=1$ and Cramer's rule

$$
\boldsymbol{\Phi}_{\phi_{0}, f}=\left[\begin{array}{ccc}
f\left(x_{1}\right) & \ldots & \psi_{N-1}\left(x_{1}\right) \\
\vdots & & \vdots \\
f\left(x_{N}\right) & \ldots & \psi_{N-1}\left(x_{N}\right)
\end{array}\right] \quad \boldsymbol{\Phi}=\left[\begin{array}{ccc}
\phi_{0}\left(x_{1}\right) & \ldots & \phi_{N-1}\left(x_{1}\right) \\
\vdots & & \vdots \\
\phi_{0}\left(x_{N}\right) & \ldots & \phi_{N-1}\left(x_{N}\right)
\end{array}\right]
$$

Comparison weights $\omega_{n} \mathrm{BH}-\mathrm{EZ}$

$$
\int_{\mathbb{X}} f(x) \mu(\mathrm{d} x) \approx \widehat{I}_{N}=\sum_{n=1}^{N} \omega_{n}\left(x_{1}, \ldots, x_{N}\right) f\left(x_{n}\right)
$$

- weights ω_{n}

- Non-asymptotic variance

$$
\begin{aligned}
& \operatorname{Var}\left[\hat{I}_{N}^{\mathrm{BH}}\right]=\frac{1}{2} \int_{\mathbb{X}^{2}}\left(\frac{f(x)}{K(x, x)}-\frac{f(y)}{K(y, y)}\right)^{2} K(x, y)^{2} \mu(\mathrm{~d} x) \mu(\mathrm{d} y) \\
& \operatorname{Var}\left[\hat{I}_{N}^{\mathrm{EZ}}\right]=\|f\|^{2}-\sum_{\ell=0}^{N-1}\left\langle f, \phi_{\ell}\right\rangle^{2}
\end{aligned}
$$

Timings

Figure 1: The colors and numbers correspond to the dimension. $a_{i}, b_{i}=-1 / 2$. For $d=1$, the tridiagonal model (tri) of Killip and Nenciu (BH, 2004) offers tremendous savings, without it is cheaper to get a sample in larger dimension. The number of rejections grows as $N \log (N) 2^{d}$.

Monitoring of the empirical convergence $\left(\lambda_{\max }, \beta=2\right)$

Convergence of the distribution of the largest eigenvalue to Tracy-Widom.

$$
\text { rescaled } \lambda_{\max }^{t} \xrightarrow[N, t \rightarrow \infty]{\text { law }} \mathrm{TW}_{2}
$$

- $V(x)=\frac{1}{4} x^{4}, \#$ indepedent runs $=10^{3}$.

- $V(x)=\frac{1}{6} x^{6}, \#$ indepedent runs $=10^{3}$.

