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Introduction

Text summarization

Extract diverse sentences of a large corpus to build a representative summary.
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Introduction

Recommendation systems

Two possible sets of answers of an image search engine to the query “bolt”.

P[ , ✓ X ]� P[ , ✓ X ]

relevance

relevance
+

diversity
K( , )

I Use DPPs to enforce diversity among the recommended items.
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Introduction

Numerical integration

Use random repulsive points as quadrature nodes to estimate an integral∫
f (x)µ(dx) ≈

N∑
n=1

ωnf (xn).

Bardenet and Hardy (2016, 2020)
I Prove faster rate of convergence with DPP points than i.i.d. points.
I Efficient sampler to put theory into practice?
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Finite projection DPP
Approximate sampling
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Monte Carlo integration
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Random linear system
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Python toolbox
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Reproducible research
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DPP basics Some insights on finite DPPs

Some insights on finite DPPs

I Point process

X ⊂{
, , , , ,

· · ·
,
}

I Diversity
P[{ , } ⊂ X ] ≥ P[{ , } ⊂ X ]

I Similarity matrix
K

I Inclusion probabilities

P[{ , } ⊂ X ] = det
[K K

K K

]
I Sufficient conditions for existence

KT = K and 0 � K � I.
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DPP basics Finite projection DPPs

Finite projection DPP

Definition
Consider K ∈ RM×M such that KT = K and K2 = K.
The point process X defined by

P[S ⊂ X ] = det KS , ∀S ⊂ {1, . . . ,M},

is called a projection DPP with kernel K.

I Samples have fixed cardinality

N , |X | = rank K.

I The likelihood reads

P[X = B] = det KB 1|B|=N .
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DPP basics Finite projection DPPs

Finite projection DPP

Example
Consider the N ×M feature matrix Φ =

[
φ1, . . . , φM

]
, such that rankΦ = N, and

build the kernel
K = ΦT[ΦΦT]

−1
Φ.

I The likelihood reads

P[X = B] =
(detΦ:B)2

detΦΦT 1|B|=N .

I Geometrically, e.g., for N = 2,

P[X = { , }] ∝ volume2

φ

φ

I The support is formed by collections of columns of Φ forming a basis of RN ,
B , {B ; |B| = N, and detΦ:B 6= 0}.
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DPP basics Continuous projection DPPs

Continuous projection DPP

Definition
Let φ0, . . . , φN−1 be orthonormal functions in L2(X, µ) and

K (x , y) =
N−1∑
k=0

φk(x)φk(y).

Take (x1, . . . , xN) with joint probability distribution
1

N!
det[K (xi , xj)]Ni,j=1

N∏
n=1

µ(dxn).

Then X , {x1, . . . , xN} ⊂ X defines a projection DPP with kernel K .
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Continuous projection DPP

Definition
Let φ0, . . . , φN−1 be orthonormal functions in L2(X, µ) and

K (x , y) =
N−1∑
k=0

φk(x)φk(y).

Take (x1, . . . , xN) with joint probability distribution
1

N!
det[K (xi , xj)]Ni,j=1

N∏
n=1

µ(dxn).

Then X , {x1, . . . , xN} ⊂ X defines a projection DPP with kernel K .

Considering
I X = {1, . . . ,M},

I µ =
M∑

m=1
δm,

one recovers the finite case with K = ΦTΦ and ΦΦT = IN .
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DPP basics Exact sampling from finite projection DPPs

Sequential sampling using the chain rule

The goal is to generate a random subset X , such that
P[X = {x1, . . . , xN}] = det K{x1,...,xN}.

(Hough et al., 2006; Gillenwater, 2014)

Consider the eigendecomposition K = ΦTΦ, where ΦΦT = IN .

I Sample (x1, . . . , xN) in the following way

P[x1 = x ] = 1
N ‖φx‖2

,

P[x2 = x |x1] = 1
N−1 distance2(φx , span{φx1}),

...
P[xN = x |x1:N−1] = distance2(φx , span

{
φx1 , . . . , φxN−1

})
.

I The likelihood of (x1, . . . , xN) reads

P[(x1, . . . , xn)] =
1

N!
volume2{φx1 , . . . , φxN} =

1
N!

det K{x1,...,xN}.

I The procedure is akin to Gram-Schmidt orthogonalization O(MN2).
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DPP basics Exact sampling from finite projection DPPs

Illustration of the chain rule (M = 24,N = 2)

Text to summarize using N = 2 sentences.

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow-
You are not wrong, who deem
That my days have been a dream;
Yet if hope has flown away
In a night, or in a day,
In a vision, or in none,
Is it therefore the less gone?
All that we see or seem
Is but a dream within a dream.
I stand amid the roar
Of a surf-tormented shore,
And I hold within my hand
Grains of the golden sand-
How few! yet how they creep
Through my fingers to the deep,
While I weep--while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?
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DPP basics Exact sampling from finite projection DPPs

Illustration of the chain rule (M = 24,N = 2)

Output summary.

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow-
You are not wrong, who deem
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P[X = {x1, x2}] = volume2{φx1 , φx2} = det K{x1,x2}.
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DPP basics Approximate sampling from finite projection DPPs

The basis-exchange walk

Metropolis Hastings kernel
(Feder and Mihail, 1992; Anari, Gharan, and Rezaei, 2016; Li, Jegelka, and Sra, 2016; Hermon and Salez, 2019)

I Starting from B0 ∈ B.

I Transitions
B → B̃ = (B \ {s}) ∪ {t},

where s ∼ Uniform(B) and t ∼ Uniform(Bc).
I Acceptance probability (lazy)

1
2 min

(
1,

det KB̃
det KB

)
=

1
2 min

(
1,

(detΦ:B̃)2

(detΦ:B)2

)
·

I Mixing time

O
(

MN log
(

log
(

1
det K B0

)))
.

I (naive) Transition cost O(N3).
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DPP basics Approximate sampling from finite projection DPPs

Illustration of the basis-exchange walk (M = 24,N = 7)

B0 = {1, 3, 9, 12, 13, 18, 24}

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow-
You are not wrong, who deem
That my days have been a dream;
Yet if hope has flown away
In a night, or in a day,
In a vision, or in none,
Is it therefore the less gone?
All that we see or seem
Is but a dream within a dream.
I stand amid the roar
Of a surf-tormented shore,
And I hold within my hand
Grains of the golden sand-
How few! yet how they creep
Through my fingers to the deep,
While I weep--while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?
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Conceptual shift: sampling by solving randomized linear programs

DPP sampling

Finite projection DPP
Approximate sampling
Linear programming

�� ��ICML, 2017

Monte Carlo integration
Exact sampling

Random linear system

�� ��NeurIPS, 2019

Python toolbox
DPPy � �

Reproducible research

In [2]: from dppy import *
# [...]
dpp.sample()�� ��JMLR-MLOSS, 2019

β-ensembles
Gibbs sampling

Random matrices

eigvals

x x 0
0 0 x
0 0 0


�� ��Submitted, 2020

https://github.com/guilgautier/DPPy
https://dppy.readthedocs.io/
https://github.com/guilgautier/DPPy


Contributions Zonotope sampling for finite projection DPPs

Continuous embedding of the support

The support of finite projection DPPs, characterized by
B , {B ; |B| = N, and detΦ:B 6= 0},

has the following geometrical representation.

φ1

φ2

φ3

φ4

�� ��How to identify the tiles?
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Contributions Zonotope sampling for finite projection DPPs

Tiling of a zonotope (Dyer and Frieze, 1994)

Definition (Zonotope)
Let Φ ∈ RN×M such that rankΦ = N

Z(Φ) , Φ[0, 1]M .

I Let x ∈ Z(Φ).
I Solve the linear program (LP)

miny∈RM cTy
s.t. Φy = x

0 ≤ y ≤ 1
I Consider the optimal solution y∗

and keep only

Bx = {i ; 0 < y∗i < 1} ∈ B.

Example (M = 4,N = 2)
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φ3
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Contributions Zonotope sampling for finite projection DPPs

Random walk on zonotope (LP)
=⇒ random walk on tiles

Gautier, Bardenet, and Valko (2017)
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I Limiting distribution on B

P[Bx = B] = CB × |detΦ:B |.

�
�

�
�How to make P[Bx = B] ∝ (detΦ:B)2?
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Contributions Zonotope sampling for finite projection DPPs

Hit-and-run with acceptance ratio = 1

The target density on Z(Φ) is uniform,

π(x) ∝
∑
B∈B

1× 1Z(Φ:B)(x).

The limiting distribution on B takes the form

P[Bx = B] ∝ 1× |detΦ:B | = |detΦ:B |1.
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Contributions Zonotope sampling for finite projection DPPs

Hit-and-run with acceptance ratio =
∣∣∣detΦ:B̃

detΦ:B

∣∣∣
The target density on Z(Φ) is given by

π(x) ∝
∑
B∈B
|detΦ:B | × 1Z(Φ:B)(x).

The limiting distribution on B takes the form

P[Bx = B] ∝ |detΦ:B | × |detΦ:B | = (detΦ:B)2.
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Contributions Zonotope sampling for finite projection DPPs

Illustration of the zonotope walk (M = 24,N = 7)

B0 = {1, 3, 9, 12, 13, 18, 24}
∪ {6, 8, 14, 17}

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow-
You are not wrong, who deem
That my days have been a dream;
Yet if hope has flown away
In a night, or in a day,
In a vision, or in none,
Is it therefore the less gone?
All that we see or seem
Is but a dream within a dream.
I stand amid the roar
Of a surf-tormented shore,
And I hold within my hand
Grains of the golden sand-
How few! yet how they creep
Through my fingers to the deep,
While I weep--while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?
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While I weep--while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?

B1 = (B0 \ {1, 9, 13, 18})
∪ {6, 8, 14, 17}
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Contributions Zonotope sampling for finite projection DPPs

Illustration of the zonotope walk (M = 24,N = 7)

B0 = {1, 3, 9, 12, 13, 18, 24}
∪ {6, 8, 14, 17}

Take this kiss upon the brow!
And, in parting from you now,
Thus much let me avow-
You are not wrong, who deem
That my days have been a dream;
Yet if hope has flown away
In a night, or in a day,
In a vision, or in none,
Is it therefore the less gone?
All that we see or seem
Is but a dream within a dream.
I stand amid the roar
Of a surf-tormented shore,
And I hold within my hand
Grains of the golden sand-
How few! yet how they creep
Through my fingers to the deep,
While I weep--while I weep!
O God! can I not grasp
Them with a tighter clasp?
O God! can I not save
One from the pitiless wave?
Is all that we see or seem
But a dream within a dream?

B1 = (B0 \ {1, 9, 13, 18})
∪ {6, 8, 14, 17}

B2 = (B1 \ {3, 8, 12, 17})
∪{7, 10, 15, 23}

17 / 33



Contributions Zonotope sampling for finite projection DPPs

Comparison of the zonotope and basis-exchange walks

Relative error of the estimation of P[{x1, x2, x3} ⊂ X ] = det K{x1,x2,x3}.

Rel. error / iteration PSRF / iteration Rel. error / CPU time

�� ��Can we generalize the idea to the continuous setting?
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Contributions Transition

Sampling by solving randomized linear programs?
Finite case
Linear Programming (LP)

miny cTy
s.t. ϕ1

Ty = x1
...

ϕN
Ty = xN

0 ≤ y ≤ 1

I Unique solution y∗ ,
I Efficient solvers ,
I “Support” of the solution

I |i ; 0 < y∗i < 1| = N ,
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Ty = x1
...

ϕN
Ty = xN

0 ≤ y ≤ 1

I Unique solution y∗ ,
I Efficient solvers ,
I “Support” of the solution

I |i ; 0 < y∗i < 1| = N ,

Continuous case (dimension d)
Linear Semi Infinite Programming (LSIP)

minν
∫

c(x)ν(dx)

s.t.
∫
ϕ1(x)ν(dx) = m1

...∫
ϕN(x)ν(dx) = mN

“0 ≤ µ ≤ 1”

I No unique solution /
I No efficient solvers /
I Structure of the support of solutions

I ∃ν∗ s.t. | supp ν∗| ≤ N.

(Goberna and López, 2014)
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...

Eν
[
X 2N−1] = m2N−1

I Unique solution ν∗ =
N∑

n=1
ωnδxn ,

I Unstable support extraction /

(ωn), (xn) define a quadrature rule
(RyBo15; Dette and Studden, 1997)�� ��How to randomize the moment constraints s.t. {x1, . . . , xN} ∼ target DPP?
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Contributions Transition

Sampling by computing the eigenvalues of random
tridiagonal matrices

Dimension d = 1
Truncated moment problem

minν Eν
[
X 2N]

s.t. Eν [X ] = m1
...

Eν
[
X 2N−1] = m2N−1

I Unique solution ν∗ =
N∑

n=1
ωnδxn

I (ωn), (xn) define a quadrature rule∫
p dµ =

∑
ωnp(xn), deg p ≤ 2N − 1.
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s.t. Eν [X ] = m1
...

Eν
[
X 2N−1] = m2N−1

I Unique solution ν∗ =
N∑

n=1
ωnδxn

I (ωn), (xn) define a quadrature rule∫
p dµ =

∑
ωnp(xn), deg p ≤ 2N − 1.

Reparametrize ν∗ via the 3-terms
recurrence relation ⊥ polynomials
encoded by

Ja,b ,


a1
√

b1 (0)

√
b1 a2

. . .
. . . . . . √bN−1

(0)
√

bN−1 aN


I {x1, . . . , xN} = eigvals Ja,b

I Computational cost O(N2)
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Sampling 1D continuous projection DPPs may be cheaper than
sampling finite projection DPPs?U 20 / 33



Overview

Introduction

DPP basics
Some insights on finite DPPs
Finite projection DPPs
Continuous projection DPPs
Exact sampling from finite projection DPPs
Approximate sampling from finite projection DPPs

Contributions
Zonotope sampling for finite projection DPPs
Transition
Fast sampling from β-ensembles

Conclusion
Summary of contributions
Open questions and perspectives



Convert a random matrix analysis tool to a computational tool

DPP sampling

Finite projection DPP
Approximate sampling
Linear programming

�� ��ICML, 2017

Monte Carlo integration
Exact sampling

Random linear system

�� ��NeurIPS, 2019

Python toolbox
DPPy � �

Reproducible research

In [2]: from dppy import *
# [...]
dpp.sample()�� ��JMLR-MLOSS, 2019

β-ensembles
Gibbs sampling

Random matrices

eigvals

x x 0
0 0 x
0 0 0


�� ��Submitted, 2020

https://github.com/guilgautier/DPPy
https://dppy.readthedocs.io/
https://github.com/guilgautier/DPPy


Contributions Fast sampling from β-ensembles

Definition (β-ensemble)
Let (x1, . . . , xN) with distribution proportional to

∣∣∣∏
i<j

(xj − xi )
∣∣∣β N∏

n=1
e−V (xn)dxn,

then X = {x1, . . . , xN} is called a β-ensemble with potential V .

I Repulsion characterized by
∏

i<j(xj − xi ) = det
[
x i−1

j
]N

i,j=1

= det
[
x i−1

j
]N

i,j=1

.

I Strength of the repulsion parametrized by β > 0 (inverse temperature).
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then X = {x1, . . . , xN} is called a β-ensemble with potential V .

I Repulsion characterized by
∏

i<j(xj − xi ) = det
[
x i−1

j
]N

i,j=1 .

I Strength of the repulsion parametrized by β > 0 (inverse temperature).

Example (β = 2, corresponds to a projection DPP)

I µ(dx) = e−V (x)dx .

I K (x , y) =
N−1∑
k=0

pk(x)pk(y), pk , p` ⊥ polynomials w.r.t. µ.
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Contributions Fast sampling from β-ensembles

Classical β-ensembles and random matrix models

Name Potential V (x) Support
Hermite 1

2σ2 (x − µ)2 R
Laguerre −(k − 1) log(x) + 1

θ x ]0,∞[
Jacobi −(a − 1) log(x)− (b − 1) log(1− x) ]0, 1[

Example (β = 2 and X ∼ standard complex Gaussian matrix)

I X ∈ CN×N

I eigvals(X + X H) ∼ Hermite

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30
fsc

hist

I X ∈ CN×M

I eigvals(XX H) ∼ Laguerre

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 fMP

hist

Random matrix models grant O(N3) exact samplers!
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Contributions Fast sampling from β-ensembles

Classical β-ensembles and random tridiagonal models
Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent
random tridiagonal models, valid for β > 0,

eigvals


a1
√

b1 (0)

√
b1 a2

. . .
. . . . . . √bN−1

(0)
√

bN−1 aN

.

23 / 33



Contributions Fast sampling from β-ensembles

Classical β-ensembles and random tridiagonal models
Dumitriu and Edelman (2002) and Killip and Nenciu (2004) derived equivalent
random tridiagonal models, valid for β > 0,

eigvals


a1
√
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√
b1 a2

. . .
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(0)
√

bN−1 aN

.

Example (Hermite ensemble, β > 0,V (x) = 1
2σ2 (x − µ)2)

Consider independent an ∼ N
(
µ, σ2), and bn ∼ Γ

(
β
2 (N − n), σ2

)
.
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Random tridiagonal models grant O(N2) exact samplers!�� ��Extend tridiagonal models to more general β-ensembles ?
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Contributions Fast sampling from β-ensembles

How to randomize the entries of the tridiagonal matrix?

Proposition (Krishnapur et. al, 2016)
Consider the random tridiagonal matrix Ja,b where the entries have joint density

∝ e−Tr V (Ja,b)
N−1∏
n=1

b
β
2 (N−n)−1

n .

Then, the eigenvalues of Ja,b have joint density

∝
∣∣∣∏

i<j
(xj − xi )

∣∣∣β N∏
n=1

e−V (xn).

N∏
n=1

ω
β
2 −1

n .
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Gautier, Bardenet, and Valko (2020 - arXiv)

I Provide simple and clean proof.

, starting from µ∗ =
N∑

n=1
ωnδxn

.

I Extend Krishnapur’s result to unify the treatment of classical β-ensembles.
I Perform empirical study of tridiagonal models for polynomial potential V .
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Contributions Fast sampling from β-ensembles

Tridiagonal models for polynomial potentials V

When degree V = 2,
I (an), (bn) are independent ,
I have easy-to-sample distribution ,

Example (V (x) = 1
2σ2 (x − µ)2)

an ∼ N
(
µ, σ2), bn ∼ Γ

(
β
2 (N − n), σ2

)
.
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When degree V > 2,
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Contributions Fast sampling from β-ensembles

Monitoring of the empirical convergence

Convergence of the empirical marginal distribution to the equilibrium measure.

µ̂t
N =

1
N

N∑
n=1

δx t
n
−−−−−→
N,t→∞

µeq.

I V (x) = 1
4 x4, exact sampling of the conditionals.

N = 20

N = 150 ‖F̂ t
N − Feq‖∞(t)

1.5 0.0 1.50.0

0.1

0.2

0.3

0.4

eq

t = 1
t = 2
t = 3
t = 4
t = 5

Supports the O(log(N)) mixing time conjecture of Krishnapur et. al (2016).
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My Ph.D. in a nutshell

Continuous setting

Finite setting Continuous setting

Software engineering
DPP sampling

Finite projection DPP
Approximate sampling
Linear programming

�� ��ICML, 2017

Monte Carlo integration
Exact sampling

Random linear system

�� ��NeurIPS, 2019

Python toolbox
DPPy � �

Reproducible research

In [2]: from dppy import *
# [...]
dpp.sample()�� ��JMLR-MLOSS, 2019

β-ensembles
Gibbs sampling

Random matrices

eigvals

x x 0
0 0 x
0 0 0


�� ��Submitted, 2020

https://github.com/guilgautier/DPPy
https://dppy.readthedocs.io/
https://github.com/guilgautier/DPPy


Conclusion Summary of contributions

Zonotope sampling for finite projection DPPs

I New perspective on finite projection DPPs.
I Combination of geometry, Markov chains and linear programming.
I Approximate sampler involving randomized linear programs.
I More efficient exploration of the state space.�� ��ICML, 2017
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Conclusion Summary of contributions

Tridiagonal models for sampling β-ensembles

eigvals

x x 0
0 0 x
0 0 0


1.5 0.0 1.50.0

0.1

0.2

0.3

0.4

0.5

eq

t = 1
t = 2
t = 3
t = 4
t = 5

I Unified treatment of tridiagonal models for the classical β-ensembles.
I Combination of a Gibbs sampler with calculation of eigenvalues.
I Very fast empirical convergence supporting the O(log(N)) mixing time

conjecture. �� ��Submitted to an international journal, 2020
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Conclusion Summary of contributions

Monte Carlo integration with DPPs

Let {x1, . . . , xN} ∼ DPP(K , µ), where K (x , y) =
N−1∑
k=0

φk(x)φk(y).

∫
f (x)µ(dx) ≈

N∑
n=1

ωnf (xn),

I Shed light on the estimator of Ermakov and Zolotukhin (1960)
I involving a randomized linear system
I provide new simple proofs of its properties

Var = ‖f ‖2 −
N−1∑
k=0

〈f , φk〉2.

I Numerical comparison with the estimator of Bardenet and Hardy (2020)
I Tailored implementation of the chain rule.

Adapt the kernel K to the basis where f has a smooth/sparse expansion.�� ��NeurIPS, 2019
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Conclusion Summary of contributions

DPPy: DPP sampling with Python

In [2]: from dppy import *
# [...]
dpp.sample()

I Open source toolbox �.
I Implementation of exact and approximate samplers.
I Extensive documentation �.�� ��JMLR-MLOSS, 2019
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Conclusion Open questions and perspectives

Open questions

I Zonotope
I prove a bound on the mixing time.
I extend the LP idea for continuous DPPs.

I β-ensembles
I prove the O(log(N)) mixing time for the Gibbs sampler.
I extend tridiagonal models for multivariate β-ensembles.

I Efficient sampler for continuous projection DPPs (d > 1)?
I Avoid kernel eigendecomposition for sampling non-projection DPPs?
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Conclusion Open questions and perspectives

Perspectives

I Find a good reparametrization of DPPs where
I complex interaction structure vanishes.
I efficient sampling can be performed.

I Continuous extension of sampling by solving linear programs.
I Sampling by coupling the target DPP with another process.

I Decreusefond, Flint, and Low (2013), Launay, Galerne, and Desolneux (2018),
and Dereziński, Calandriello, and Valko (2019).

I Continue developing the DPPy toolbox � �.
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Thank you!
Ευχαριστώ!

Merci!





References [1]

Anari, N., S. O. Gharan, and A. Rezaei. 2016. Monte Carlo Markov Chain
Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal
Point Processes. In Conference on Learning Theory (COLT).
arXiv:1602.05242. (see slides 49, 50, 51, 52, 53).

Bardenet, R., and A. Hardy. 2020. Monte Carlo with Determinantal Point
Processes. Annals of Applied Probability. arXiv:1605.00361. (see slides 4, 133,
148).

Chen, Y., R. Dwivedi, M. Wainwright, and Y. Bin. 2018. Fast MCMC Sampling
Algorithms on Polytopes. Journal of Machine Learning Research. (see
slides 70, 71, 72, 73, 74).

Decreusefond, L., I. Flint, and K. C. Low. 2013. Perfect Simulation of
Determinantal Point Processes. ArXiv e-prints. arXiv:1311.1027. (see
slide 137).

http://proceedings.mlr.press/v49/anari16
http://proceedings.mlr.press/v49/anari16
http://proceedings.mlr.press/v49/anari16
http://arxiv.org/abs/1602.05242
http://dx.doi.org/10.1214/19-AAP1504
http://dx.doi.org/10.1214/19-AAP1504
http://arxiv.org/abs/1605.00361
http://jmlr.org/papers/v19/18-158.html.
http://jmlr.org/papers/v19/18-158.html.
http://arxiv.org/abs/1311.1027
http://arxiv.org/abs/1311.1027
http://arxiv.org/abs/1311.1027


References [2]
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L-ensembles and k-DPPs

Definition (L-ensemble)
Let L � 0. The point process defined by

P[X = S] =
det LS

det(I + L)
,

is called an L-ensemble. It is a DPP with kernel K = L(I + L)−1.

Definition (k-DPP)
Let L � 0 and k ∈ N∗. The point process defined by

P[X = S] ∝ det LS 1|S|=k .

is called a k-DPP.



Chain rule on sets

∅

{�1}

{�1, �2}

...

∅X = {M}

...

{�1, 2}

...
...

{1}

{1, �2}

...

{1, 4}

...

{1, 2}

...
...

{1, . . . ,M} M ∈ X ?

...

2 ∈ X ?

1 ∈ X ?



BH estimator and the multivariate Jacobi ensemble
Natural unbiased estimator of

∫
X f (x)µ(dx)

Î BH
N (f ) =

N∑
n=1

f (xn)

K (xn, xn)

I Bardenet and Hardy (2020) show fast CLT, for f essentially C1

√
N1+1/d

(
Î BH
N (f )−

∫
[−1,1]d

f (x)ω(x)dx
)

law−−−−→
N→∞

N
(
0,Ω2

f ,ω
)
,

with Ω2
f ,ω , 1

2
∑

k∈Nd
(k1 + · · ·+ kd ) F

[
f ω
ωeq

]
(k)2



Theorem (Ermakov and Zolotukhin, 1960)

f =
M−1∑
`=0
〈f , φ`〉φ`, M ∈ N ∪ {∞}

1. Sample {x1, . . . , xN} ∼ DPP(µ,K ) with K (x , y) =
N−1∑
k=0

φk(x)φk(y)

2. Random linear systemφ0(x1) . . . φN−1(x1)
...

...
φ0(xN) . . . φN−1(xN)


 y0

...
yN−1

 =

 f (x1)
...

f (xN)



I E[yk ] = 〈f , φk〉 =
∫

f (x)φk(x)µ(dx)

I Var[yk ] = ‖f ‖2 −
N−1∑̀
=0
〈f , φ`〉2 =

M−1∑
`=N
〈f , φ`〉2 = 0 if M ≤ N

I Cov[yj , yk ] = 0, j 6= k



Ermakov and Zolotukhin (1960) estimator
For constant φ0, e.g., multivariate Jacobi ensemble,

E[y0] = φ0

∫
X

f (x)µ(dx)

A direct application of EZ theorem yields

Î EZ
N (f ) ,

y0
φ0

=

√
µ
(
[−1, 1]d

) detΦφ0,f (x1:N)

detΦ(x1:N)

as an unbiased estimator of
∫

f (x)µ(dx)

Using ‖φ0‖ = 1 and Cramer’s rule

Φφ0,f =

 f (x1) . . . ψN−1(x1)
...

...
f (xN) . . . ψN−1(xN)

 Φ =

φ0(x1) . . . φN−1(x1)
...

...
φ0(xN) . . . φN−1(xN)





Comparison weights ωn BH-EZ
∫
X

f (x)µ(dx) ≈ ÎN =
N∑

n=1
ωn(x1, . . . , xN)f (xn)

I weights ωn

plain BH EZ
I Non-asymptotic variance

Var
[̂
I BH
N
]

=
1
2

∫
X2

(
f (x)

K (x , x)
− f (y)

K (y , y)

)2
K (x , y)2

µ(dx)µ(dy)

Var
[̂
I EZ
N

]
= ‖f ‖2 −

N−1∑
`=0
〈f , φ`〉2



Timings
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Figure 1: The colors and numbers correspond to the dimension. ai , bi = −1/2. For
d = 1, the tridiagonal model (tri) of Killip and Nenciu (BH, 2004) offers tremendous
savings, without it is cheaper to get a sample in larger dimension. The number of
rejections grows as N log(N)2d .



Monitoring of the empirical convergence (λmax, β = 2)
Convergence of the distribution of the largest eigenvalue to Tracy-Widom.

rescaled λt
max

law−−−−−→
N,t→∞

TW2 .

I V (x) = 1
4 x4, #indepedent runs = 103.
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