Scholar

arXiv

Orcid

Preprints

  1. Hawat, D., Gautier, G., Bardenet, R., & Lachièze-Rey, R. (2022). On estimating the structure factor of a point process, with applications to hyperuniformity. In ArXiv e-prints.

Journal articles

  1. Gautier, G., Bardenet, R., & Valko, M. (2021). Fast sampling from β-ensembles. Statistics and Computing.
  2. Gautier, G., Polito, G., Bardenet, R., & Valko, M. (2019). DPPy: DPP Sampling with Python. Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS).

Conference papers

  1. Gautier, G., Bardenet, R., & Valko, M. (2019). On two ways to use determinantal point processes for Monte Carlo integration. Advances in Neural Information Processing Systems (NeurIPS).
  2. Gautier, G., Bardenet, R., & Valko, M. (2017). Zonotope Hit-and-run for Efficient Sampling from Projection DPPs. International Conference on Machine Learning (ICML).

Workshop papers

  1. Gautier, G., Bardenet, R., & Valko, M. (2019). On two ways to use determinantal point processes for Monte Carlo integration. Workshop on Negative Dependence in Machine Learning, International Conference on Machine Learning (ICML).
  2. Gautier, G., Bardenet, R., & Valko, M. (2019). Les processus ponctuels déterminantaux en apprentissage automatique. French Colloquium on Signal and Image Processing (GRETSI).

Thesis

  1. Gautier, G. (2020). On sampling determinantal point processes (Number 2020ECLI0002) [Ph.D. thesis, École Centrale de Lille].

Popularization

  1. Gautier, G., Bardenet, R., & Valko, M. (2017). Un dé pipé aux multiples facettes pour améliorer les moteurs de recherche. CNRS info - Résultats Scientifiques - Informatique.