Hawat, D., Gautier, G., Bardenet, R., & Lachièze-Rey, R. (2022). On estimating the structure factor of a point process, with applications to hyperuniformity. In ArXiv e-prints.
Gautier, G., Polito, G., Bardenet, R., & Valko, M. (2019). DPPy: DPP Sampling with Python. Journal of Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS).
Gautier, G., Bardenet, R., & Valko, M. (2019). On two ways to use determinantal point processes for Monte Carlo integration. Advances in Neural Information Processing Systems (NeurIPS).
Gautier, G., Bardenet, R., & Valko, M. (2017). Zonotope Hit-and-run for Efficient Sampling from Projection DPPs. International Conference on Machine Learning (ICML).
Gautier, G., Bardenet, R., & Valko, M. (2019). On two ways to use determinantal point processes for Monte Carlo integration. Workshop on Negative Dependence in Machine Learning, International Conference on Machine Learning (ICML).
Gautier, G., Bardenet, R., & Valko, M. (2019). Les processus ponctuels déterminantaux en apprentissage automatique. French Colloquium on Signal and Image Processing (GRETSI).
Gautier, G., Bardenet, R., & Valko, M. (2017). Un dé pipé aux multiples facettes pour améliorer les moteurs de recherche. CNRS info - Résultats Scientifiques - Informatique.